In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
Okay so,
1) Translation- show the RNA strand attatching to a DNA strand with the complimentary base pairs. introns are spliced
2) mRNA leaves the cell and joins with a ribosome
3) Transcription - tRNA (clover shaped) reads each codon (triplets) which each code for an amino acid. The stop codons on the end tell the tRNA that the chain is finished
4) the sequence forms the primary structure (all peptide bonds) which determines the shape of the secondary (hyrdogen and peptide) and hence determines the shape of the tertiary structure of a protein (ionic, hydrogen, disulfide bridges and hydrophibic interactions)
Hope this helps :)
Answer:
According to the Lewis concept, an acid is defined as a substance that accepts electron pairs and base is defined as a substance which donates electron pairs. Hence, the correct statement is arrhenius acid produces hydrogen ions in solution.
Answer:
669.48 kJ
Explanation:
According to the question, we are required to determine the heat change involved.
We know that, heat change is given by the formula;
Heat change = Mass × change in temperature × Specific heat
In this case;
Change in temperature = Final temp - initial temp
= 99.7°C - 20°C
= 79.7° C
Mass of water is 2000 g ( 2000 mL × 1 g/mL)
Specific heat of water is 4.2 J/g°C
Therefore;
Heat change = 2000 g × 79.7 °C × 4.2 J/g°C
= 669,480 joules
But, 1 kJ = 1000 J
Therefore, heat change is 669.48 kJ
Answer:
google chrome
Explanation:
it is the home button on the top left corner