Earlier species thanks to evolution. hope this helped!
When adjusted for any changes in δh and δs with temperature, the standard free energy change δg∘t at 2400 k is equal to 1.22×105j/mol, then the equilibrium constant at 2400 k is 2.21×10−3. The answer to the statement is 2.21×10−3.
Explanation:
total heat = Heat required to convert 2 kg of ice to 2 kg of water at 0 °C + Heat required to convert 2 kg of water at 0 °C to 2 kg of water at 20 °C.
Heat=mhfg+mCpΔT
Here, m ( mass of ice) = 2 kg
hfg (latent heat of fusion of ice) = 334 KJ
Cp of water (specific heat) = 4.187 KJ/Kg-K
ΔT(Temperature difference) = 20 °C
Therefore, Heat required = 2 x 334 + 2 x 4.187 x (20 - 0 )
Heat reqd= 835.48 KJ
Therefore, to melt 2 kg of ice 835.48 KJ of heat is required.
Answer:
A). 92.02g
Explanation:
Equation of the reaction;
N2 (g)+ 2O2(g)------> 2NO2(g)
Note that the balanced reaction equation is the first step in solving any problem on stoichiometry. Once the reaction equation is correct, the question can be easily solved.
Reaction of one mole of nitrogen gas with two moles of oxygen gas yields two moles of nitrogen dioxide.
Mass of two moles of nitrogen dioxide= 2[14 + 2(16)] = 2[14+32]= 2[46]= 92 gmol-1
Therefore; Mass of two moles of nitrogen dioxide is 92
The molar mass of gas = 238.29 g/mol
<h3>Further explanation</h3>
Given
mass = 81.5 g
P=1.75 atm
V=4.92 L
T=307 K
Required
molar mass
Solution
The gas equation can be written


So the equation becomes :

Input the value :
