The elements in Groups 1A(1) and 7A(17) are all quite reactive.
<h3>Major difference between Groups 1A(1) and 7A(17) : </h3>
Group 7's halogens, which are non-metal elements, become less reactive as you move down the group. In contrast to the alkali metals in Group 1 of the periodic table, this trend is the opposite. The most reactive element in Group 7 is fluorine.
Alkali metals are soft and reactive metals. They react vigorously with water and become more reactive. And other hand halogens are reactive non metals.
- Elements of group 1A are known as alkali metals. Elements of this group are lithium, sodium, potassium, rubidium, cesium.
- Reactivity increase down group 1 but decrease up group 7 this is because group 7 elements react by gaining an electron. As one move down the group, the amount of electron shielding increases, meaning that the electron is less attracted to the nucleus.
To know more about Groups 1A(1) and 7A(17) please click here :
brainly.com/question/13063502
#SPJ4
3. Plasma
- indefinite shape & volume
- affected by magnetic and electric field
- drift and flow freely
4. Liquids have fixed volume meaning packed tighter together as gases do not have fixed shape or volume .
D would be correct
The main points of Dalton's atomic theory, as it eventually developed, are: Elements are made of extremely small particles called atoms. Atoms of a given element are identical in size, mass and other properties; atoms of different elements differ in size, mass and other properties.
Molarity is defined as the number of moles of solute in 1 L of solution
molar mass of Ni(NO₃)₂ - 182.7 g/mol
number of moles of Ni(NO₃)₂ - 5.80 g/ 182.7 g/mol = 0.0317 mol
number of moles in 500 mL - 0.0317 mol
therefore number of moles in 1000 mL - 0.0317 mol / 500 mL x 1000 mL/L
molarity of the solution is - 0.0634 M