The Constitution provides the basic structure for US Government.
As a sidenote, you posted this in Chemistry, when it actually belongs in another topic. Please be sure to post questions only where they belong. Thanks! :)
Since we know that one mole of any gas at STP is equal to 22.4 L we can multiply 135L by the following conversion: 1 mole/22.4L. When you set up the problem it looks like this…: (135L)x 1 mole/22.4L =6.03 moles of oxygen gas The liters cancel out and you are left with moles as your units.
So your answer is then 3.058
Answer:
it is A mark me big brain pls
Explanation:
Answer:
alkanes
Explanation:
allkanes only have a single bond
Explanation:
At 365 K temperature sulfur tetrafluoride have a density of 0.260 g/L at 0.0721 atm.
What is an ideal gas equation?
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide
the given mass by the number of moles to get molar mass.
Given data:
P= 0.0721 atm
n=\frac{mass}{molar \;mass}n=
molarmass
mass
R= 0.082057338 \;L \;atm \;K^{-1}mol^{-1}R=0.082057338LatmK
−1
mol
−1
T=?
Putting value in the given equation:
\frac{PV}{RT}=n
RT
PV
=n
density = \frac{2 \;atm\; X molar\; mass}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}density=
0.082057338LatmK
−1
mol
−1
XT
2atmXmolarmass
0.260 g/L = \frac{0.0721 \;atm\; X 108.07 g/mol}{0.082057338 \;L \;atm \;K^{-1}mol^{-1} X T}0.260g/L=
0.082057338LatmK
−1
mol
−1
XT
0.0721atmX108.07g/mol
T = 365.2158727 K= 365 K
Hence , at 365 K temperature sulfur tetrafluoride have a density of 0.260 g/L at 0.0721 atm.