B. The rate of particle collisions increased with a higher temperature.
An <em>inference </em>is a guess that you make <em>based on an observation</em>. You can’t see the particles, so you are guessing (a) that they exist and (b) that the rate of their collisions increases with a higher temperature.
A, C, and D are all incorrect because they are <em>observations</em> that you make.
The correct answer is gonna be C) A lithium cation ion is smaller
A lithium cation has lost its valence electrons, which causes the remaining electrons to be pulled in stronger by the positive charge in the nucleus. As they get closer to the nucleus, the overall size of the atom is decreased.
Answer:
D) CN⁻
Explanation:
Hund's Rule of Maximum Multiplicity state that electrons go into degenerate orbitals of sub-levels (p,d, and f ) singly before pairing commences. Hund's rule is useful in determining the number of unpaired electrons in an atom. As such, it explains some magnetic properties of elements.
An element whose atoms or molecules contain unpaired electrons is paramagnetic. i.e., weakly attracted to substances in a magnetic field.
On the other hand, the element whose atoms or molecules are filled up with paired electrons is known as diamagnetic, i.e., not attracted by magnetic substances.
According to the molecular orbital theory, the diamagnetic molecule is CN⁻ because of the absence of unpaired electrons.
The energy of the carbide released is 7262.5MJ.
<h3>What is the energy?</h3>
We know that the reaction between calcium oxide and carbon occurs in accordance with the reaction;
. The reaction is seen to produce 464.8kJ of energy per mole of carbide produced.
Number of moles of
produced = 1000 * 10^3 g/64 g/mol
= 15625 moles of calcium carbide
If 1 mole of
transfers 464.8 * 10^3 J
15625 moles of calcium carbide transfers 15625 moles * 464.8 * 10^3 J/ 1 mol
= 7262.5MJ
Learn more about reaction enthalpy:brainly.com/question/1657608
#SPJ1