Answer:
The reaction will be non spontaneous at these concentrations.
Explanation:

Expression for an equilibrium constant
:
![K_c=\frac{[Ag^+][Br^-]}{[AgCl]}=\frac{[Ag^+][Br^-]}{1}=[Ag^+][Br^-]](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BAgCl%5D%7D%3D%5Cfrac%7B%5BAg%5E%2B%5D%5BBr%5E-%5D%7D%7B1%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D)
Solubility product of the reaction:
![K_{sp}=[Ag^+][Br^-]=K_c=7.7\times 10^{-13}](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3DK_c%3D7.7%5Ctimes%2010%5E%7B-13%7D%20)
Reaction between Gibb's free energy and equilibrium constant if given as:


![\Delta G^o=-2.303\times 8.314 J/K mol\times 298 K\times \log[7.7\times 10^{-13}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D-2.303%5Ctimes%208.314%20J%2FK%20mol%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B7.7%5Ctimes%2010%5E%7B-13%7D%5D)

Gibb's free energy when concentration
and ![[Br^-] = 1.0\times 10^{-3} M](https://tex.z-dn.net/?f=%5BBr%5E-%5D%20%3D%201.0%5Ctimes%2010%5E%7B-3%7D%20M)
Reaction quotient of an equilibrium = Q
![Q=[Ag^+][Br^-]=1.0\times 10^{-2} M\times 1.0\times 10^{-3} M=1.0\times 10^{-5}](https://tex.z-dn.net/?f=Q%3D%5BAg%5E%2B%5D%5BBr%5E-%5D%3D1.0%5Ctimes%2010%5E%7B-2%7D%20M%5Ctimes%201.0%5Ctimes%2010%5E%7B-3%7D%20M%3D1.0%5Ctimes%2010%5E%7B-5%7D)

![\Delta G=69.117 kJ/mol+(2.303\times 8.314 Joule/mol K\times 298 K\times \log[1.0\times 10^{-5}])](https://tex.z-dn.net/?f=%5CDelta%20G%3D69.117%20kJ%2Fmol%2B%282.303%5Ctimes%208.314%20Joule%2Fmol%20K%5Ctimes%20298%20K%5Ctimes%20%5Clog%5B1.0%5Ctimes%2010%5E%7B-5%7D%5D%29)

- For reaction to spontaneous reaction:
. - For reaction to non spontaneous reaction:
.
Since ,the value of Gibbs free energy is greater than zero which means reaction will be non spontaneous at these concentrations
Greenhouse gases act to <u>increase</u> temperatures by <u>absorbing</u> thermal infrared radiation.
We have already learned that Earth's atmosphere is composed often of nitrogen and oxygen. Those gases are transparent to incoming solar radiation. they may be also transparent to outgoing infrared radiation, which means that they do not take in or emit sun or infrared radiation.
The multiplied quantities of greenhouse gases human sports are adding to the environment have dissatisfied the balance that has been in location for the reason that ceases of the closing ice age, including greater greenhouse gases decreases the amount of infrared radiation energy leaving the atmosphere.
Greenhouse gases inside the ecosystem time and again absorb and re-radiate infrared radiation (warmth). strength radiated from Earth's surface as warmth, or infrared radiation is absorbed and re-radiated by using greenhouse gases, impeding the loss of warmth from our surroundings to area.
Learn more about radiations here brainly.com/question/24469662
#SPJ4
B, the Internet.
If Caitlin told Teddy that the largest diamond was found YESTERDAY then it wouldn't be in last month's science magazine. It also wouldn't be able to be in an encyclopedia at the library because there wouldn't have been any time to write, publish, and for the library to get the encyclopedia in one day. Caitlin's parents may not know about Caitlin's claim or about the diamond in the first place. The Internet would likely have an article about the news-breaking diamond as soon as possible.
The activation energy Ea can be related to rate constant (k) at temperature (T) through the equation:
ln(k2/k1) = Ea/R[1/T1 - 1/T2]
where :
k1 is the rate constant at temperature T1
k2 is the rate constant at temperature T2
R = gas constant = 8.314 J/K-mol
Given data:
k1 = 0.543 s-1; T1 = 25 C = 25+273 = 298 K
k2 = 6.47 s-1; T = 47 C = 47+273 = 320 K
ln(6.47/0.543) = Ea/8.314 [1/298 - 1/320]
2.478 = 2.774 *10^-5 Ea
Ea = 0.8934*10^5 J = 89.3 kJ
Answer:Amplitude:the maximum displacement or distance moved by a point on a vibrating body or wave measured from its equilibrium position. It is equal to one-half the length of the vibration path.Wave speed:Wave speed is the distance a wave travels in a given amount of time, such as the number of meters it travels per second. Wave speed is related to wavelength and wave frequency by the equation: Speed = Wavelength x Frequency. This equation can be used to calculate wave speed when wavelength and frequency are known.Wavelength:Wavelength is the distance between identical points (adjacent crests) in the adjacent cycles of a waveform signal propagated in space or along a wire. In wireless systems, this length is usually specified in meters (m), centimeters (cm) or millimeters (mm).Frequency:frequency, in physics, the number of waves that pass a fixed point in unit time; also, the number of cycles or vibrations undergone during one unit of time by a body in periodic motion.
Explanation: