Answer:
-162,5 kJ/mol
Explanation:
Cl(g) + 2O2(g) --> ClO(g) + O3(g) ΔH = 122.8 kJ/mol (as we used the reaction in the opposite direction, it will turn the enthalpy from exothermic to endothermic)
2O3(g) --> 3O2(g) ΔH = -285.3 kJ/mol
Cl(g) + O2(g) --> ClO(g) + O3(g) ΔH = 122.8 kJ
+ 2O3 (g) --> 3O2(g) ΔH = - 285.3 kJ
O3(g) + Cl(g) --> ClO(g) + 2O2(g) ΔH = 122.8 + (-285.3) = -162,5 kJ
This problem is providing the initial volume and pressure of nitrogen in a piston-cylinder system and asks for the final pressure it will have when the volume increases. At the end, the answer turns out to be 2.90 atm.
<h3>Boyle's law</h3>
In chemistry, gas laws are used so as to understand the volume-pressure-temperature-moles behavior in ideal gases and relate different pairs of variables.
In this case, we focus on the Boyle's law as an inversely proportional relationship between both pressure and volume at constant both temperature and moles:

Thus, we solve for the final pressure by dividing both sides by V2:

Hence, we plug in both the initial pressure and volume and final volume in order to calculate the final pressure:

Learn more about ideal gases: brainly.com/question/8711877
The easiest way to answer this question is to first figure out the molar mass of the sugar in question. To do this multiply the number of individual atoms for a given element by its atomic mass. 12 X 12.01 g/mol = 144.12 g/mol C. 22 X 1.008 g/mol = 22.176 g/mol H. 11 X 16.00 g/mol = 176.00 g/mol O.