a mole is defined as the amount of substance that contains as many atoms, molecules, icons, electron or any other elementary entities as there are exactly 12 gm of. of carbon atoms. the number of 12 gm of. Is called Avogadro's number
Answer:
b. It should be dumped in a beaker labeled "waste copper" on one's bench during the experiment.
d. It should be disposed of in the bottle for waste copper ion when work is completed.
Explanation:
Solutions containing copper ion should never be disposed of by dumping them in a sink or in common trash cans, because this will cause pollution in rivers, lakes and seas, being a contaminating agent to both human beings and animals. They should be placed in appropriate compatible containers that can be hermetically sealed. The sealed containers must be labeled with the name and class of hazardous substance they contain and the date they were generated.
It never should be returned to the bottle containing the solution, since it can contaminate the solution of the bottle.
In the Solutions and Spectroscopy experiments there is always wastes.
Answer:
<u>Some examples of physical properties are:
</u>
color (intensive)
density (intensive)
volume (extensive)
mass (extensive)
boiling point (intensive): the temperature at which a substance boils.
melting point (intensive): the temperature at which a substance melts.
Explanation:
Hope this helped! <3
Answer: ![K_c=\frac{[CH_3Cl]\times [OH^-]}{[CH_3OH]\times [Cl^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3Cl%5D%5Ctimes%20%5BOH%5E-%5D%7D%7B%5BCH_3OH%5D%5Ctimes%20%5BCl%5E-%5D%7D)
Explanation:
Equilibrium constant is the ratio of the concentration of products to the concentration of reactants each term raised to its stochiometric coefficients. Pure solids are assumed to have a concentration of 1.
The given balanced equilibrium reaction is:

The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CH_3Cl]\times [OH^-]}{[CH_3OH]\times [Cl^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3Cl%5D%5Ctimes%20%5BOH%5E-%5D%7D%7B%5BCH_3OH%5D%5Ctimes%20%5BCl%5E-%5D%7D)
Thus the equilibrium constant expression for this reaction is ![K_c=\frac{[CH_3Cl]\times [OH^-]}{[CH_3OH]\times [Cl^-]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCH_3Cl%5D%5Ctimes%20%5BOH%5E-%5D%7D%7B%5BCH_3OH%5D%5Ctimes%20%5BCl%5E-%5D%7D)