Answer:
53.13 °
Explanation:
In order to do this, we just need to apply the following:
tanα = Dy/Dx
Where:
Vy: speed of the ball in the y axis.
Vx: speed of the ball in the x axis.
At this point we do not need the speed of the first ball after the collision because in that moment is already heading in the direction that we are looking for. Therefore, we just need to use the innitial data to calculate the direction which the first ball will go.
According to this, then:
tanα = (40/30)
tanα = 1.3333
α = tan⁻¹(1.3333)
<h2>
α = 53.13°</h2>
This means that the final direction of the first ball is 53.13° and in the x axis because the starting momentum of this ball in the x axis has not dissapeared.
Hope this helps
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
In fresh water sound waves travel at 1497m/s at 25 degrees, I'll assume that's the characteristics of the water.
If it's 0.01s then you need to divide the speed by 100 to get the, 14.97, however it gets there and back in that time so you need to halve it.
<u>7.485m</u>
Answer:
Explanation:
Explanation: total displacement =3√2m. and total distance covered=14m. I hope this is right and helps u.
Instead of washing vegetables in running water, fill a bowl of water and wash inside the bowl.