Answer:
c)
Explanation:
As we know that resultant force is the net force that is acting on the system
As per Newton's II law we know that net force is product of mass and acceleration
so we will have

here we know
m = 80 kg
for circular motion acceleration is given as


now we have



Differentiation in its simplest of terms means breaking something into small parts. On the other hand, integration is taking those really small parts and gluing them in the right order. In short, these terms are the direct opposite or inverses of each other. The term which can tell you how fast you are going at a moment in time at ones current location is called a derivative. The term on the other hand, which can tell you how far you have travelled if you have been keeping track of your location and your time is what an integral is referred to. It is like differentiation only needs knowledge on the local neighbourhood while integration will need the knowledge on a global knowledge.
Answer:

Explanation:
The heaviside function is defined as:

so we see that the Heaviside function "switches on" when
, and remains switched on when 
If we want our heaviside function to switch on when
, we need the argument to the heaviside function to be 0 when 
Thus we define a function f:

The
term inside the heaviside function makes sure to displace the function 5 units to the right.
Now we just need to add a scale up factor of 240 V, because thats the voltage applied after the heaviside function switches on. (
when
, so it becomes just a 1, which we can safely ignore.)
Therefore our final result is:

I have made a sketch for you, and added it as attachment.
ONEEEEEEEEEEEEEEEEEEEEEEEEE