1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ra1l [238]
3 years ago
5

A uniformly charged ball of radius a and charge –Q is at the center of a hollowmetal shell with inner radius b and outer radius

c. The hollow sphere has a netcharge of +2Q. Determine the electric field strength in the four regions:Part A
Determine the electric field strength in the region r?a. Give your answer as a multiple of Q/?0.

Express your answer in terms of some or all of the variables a, b, c, r, and the constant ?.

Park B

Determine the electric field strength in the region a
Express your answer in terms of some or all of the variables a, b, c, r, and the constant ?.

Part C

Determine the electric field strength in the region b
Part D

Determine the electric field strength in the region c
Express your answer in terms of some or all of the variables a, b, c, r, and the constant ?.
Physics
1 answer:
vlabodo [156]3 years ago
3 0

Answer:

<u>r < a:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}

<u>r = a:</u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>a < r < b:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>r = b:</u>

E = \frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}

<u>b < r < c:</u>

E = 0

<u>r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

<u>r < c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

Explanation:

Gauss' Law will be applied to each region to find the E-field.

\int \vec{E}d\vec{a} = \frac{Q_{encl}}{\epsilon_0}

An imaginary sphere is drawn with radius r, which is equal to the point where the E-field is asked. The area of this imaginary sphere is multiplied by E, and this is equal to the charge enclosed by this imaginary surface divided by ε0.

<u>r<a:</u>

Since the ball is uniformly charged and not hollow, then the enclosed charge can be found by the following method: If the total ball has a charge -Q and volume V, then the enclosed part of the ball has a charge Q_enc and volume V_enc. Then;

\frac{Q}{V} = \frac{Q_{encl}}{V_{encl}}\\\frac{Q}{\frac{4}{3}\pi a^3} = \frac{Q_{encl}}{\frac{4}{3}\pi r^3}\\Q_{encl} = \frac{Qr^3}{a^3}

Applying Gauss' Law:

E4\pi r^2 = \frac{-Qr^3}{\epsilon_0 a^3}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Qr}{a^3}\\E = \frac{r}{4\pi a^3}\frac{Q}{\epsilon_0}

The minus sign determines the direction of the field, which is towards the center.

<u>At r = a: </u>

E = \frac{1}{4\pi a^2}\frac{Q}{\epsilon_0}

<u>At a < r < b:</u>

The imaginary surface is drawn between the inner surface of the metal sphere and the smaller ball. In this case the enclosed charge is equal to the total charge of the ball, -Q.

<u />E4\pi r^2 = \frac{-Q}{\epsilon_0}\\E = -\frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}<u />

<u>At r = b:</u>

<u />E = -\frac{1}{4\pi b^2}\frac{Q}{\epsilon_0}<u />

Again, the minus sign indicates the direction of the field towards the center.

<u>At b < r < c:</u>

The hollow metal sphere has a net charge of +2Q. Since the sphere is a conductor, all of its charges are distributed across its surface. No charge is present within the sphere. The smaller ball has a net charge of -Q, so the inner surface of the metal sphere must possess a net charge of +Q. Since the net charge of the metal sphere is +2Q, then the outer surface of the metal should possess +Q.

Now, the imaginary surface is drawn inside the metal sphere. The total enclosed charge in this region is zero, since the total charge of the inner surface (+Q) and the smaller ball (-Q) is zero. Therefore, the Electric region in this region is zero.

E = 0.

<u>At r < c:</u>

The imaginary surface is drawn outside of the metal sphere. In this case, the enclosed charge is +Q (The metal (+2Q) plus the smaller ball (-Q)).

E4\pi r^2 = \frac{Q}{\epsilon_0}\\E = \frac{1}{4\pi \epsilon_0}\frac{Q}{r^2}

<u>At r = c:</u>

E = \frac{1}{4\pi \epsilon_0}\frac{Q}{c^2}

You might be interested in
Why isnt geothermal energy used more often​
Dafna1 [17]
Risk of return on investment is higher than other forms of energy generation.
6 0
3 years ago
6. If a drag racer wins the final round of herrace by going an average speed of 320 m/sin 4.5 seconds, what distance did he cove
Ivan

We want to calculate the distance covered by the drag racer. Recall, the formula for calculating distance is expressed as

Distance = speed x time

From the information given,

speed = 320 m/s

time = 4.5 s

By substituting these values into the formula, we have

Distance = 320 m/s x 4.5s

s cancels out. We are left with m. Thus,

Distance = 1440m

4 0
1 year ago
Mixed powders may be categorized as​
Arada [10]

Answer:A powder is an assembly of dry particles dispersed in air. If two different powders are mixed perfectly, theoretically, three types of powder.

Explanation:

4 0
3 years ago
Mr. Bennet's class completed an investigation on magnetism. They found that most metals were attracted to magnets and plastics w
Vinil7 [7]

Answer:

A

Explanation:

7 0
2 years ago
Round to the hundredths place.
Ivanshal [37]

Answer:

21 protons

Explanation:

4 0
2 years ago
Other questions:
  • A 2 µC charge q1 and a 2 µC charge q2 are 0.3 m from the x-axis. A 4 µC charge q3 is 0.4 m from the y-axis. The distances d13 an
    5·2 answers
  • Which of the following represents a case in which you are not accelerating? -Driving 60 miles per hour around a curve -Going fro
    15·1 answer
  • What is common to all fossil fuels?
    15·2 answers
  • A car starts from rest and accelerates uniformly over a time of 7 seconds for a distance of 190m. Find the the acceleration of t
    7·1 answer
  • Map.
    7·1 answer
  • What does the law of conservation of energy state? *
    5·2 answers
  • Can a particle move in a direction of increasing electric potential, yet have its electric potential energy decrease? Explain
    6·1 answer
  • Explain why people who use the drug in the following scenario might have potential health risks.
    5·2 answers
  • Answer the questions to help you understand your parachute and forces experiment. Use the data table below to record your data.
    12·1 answer
  • if the magntidude of the sum and difference of two non zero vectors A and B is equal. what can we say about the two vectors ​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!