Gravitational potential energy can be described as m*g*h (mass times gravity times height).
Originally,
15kg * 9.8m/s^2 *0.3 m = 44.1 kg*m^2/s^2 = 44.1 Joules.
After it is moved to a 1m shelf:
15kg * 9.8m/s * 1 = 147 kg*m^2/s^2= 147 Joules.
To find how much energy was added, we subtract final energy from initial energy:
147 J - 44.1 J = 102.9 Joules.
Answer:
t=0.42s
Explanation:
Here you have an inelastic collision. By the conservation of the momentum you have:

m1: mass of the bullet
m2: wooden block mass
v1: velocity of the bullet
v2: velocity of the wooden block
v: velocity of bullet and wooden block after the collision.
By noticing that after the collision, both objects reach the same height from where the wooden block was dropped, you can assume that v is equal to the negative of v2. In other words:

Where you assumed that the negative direction is upward. By replacing and doing v2 the subject of the formula you get:

Now, with this information you can use the equation for the final speed of an accelerated motion and doing t the subject of the formula. IN other words:

hence, the time is t=0.42 s
Answer:
you would have to stand 6 ft back
Explanation:
Collision domain is a portion in the network where there is a possibility of formation of packets. This occurs when two or more devices are able to send a packet to a single switch or port on the network that is shared, on the same time. It was noted that this collision domain reduces the efficiency of the network.
For this item, the first packet is the whole switch with the three devices. Next one would be first of the three devices that is connected to the other port. Similarly, the third one would be the second of the three devices that is also connected to the switch. Therefore, the answer is 3.
Answer:
The awnser is d
Explanation:
i know cause i took the test