Answer:
Scale reading for no wind 
Explanation:
From the question we are told that
Area 
Weight of board 
Velocity 
Density of air 
Generally the equation for pressure difference by Bernoulli equation is mathematically given by


Generally force acting on the board by air is mathematically given by


Therefore
Scale reading for no wind W'


Scale reading for no wind W'=60N
Answer: c. increased sensitivity to ADH
Explanation:
a. a decline in the number of functional nephrons: With aging the loss of nephron occurs that can be detected by the age related decrease in the glomerular filteration rate.
b. a reduction in the GFR (glomerular filtration rate): The GFR tend to decline in older age even though there is no disease. These people are required to check with the GFR in future.
d. problems with the micturition reflex: With aging people experience problem of bladder control. This leads to leakage or incontinence of urine or urinary retention that is inability to empty the bladder.
e. loss of sphincter muscle tone: With age the sphincter tone may diminish. This results in loss of control and storage capacity. The rectal muscles or sphincter muscles get loose which lead to passage of stool before reaching the washroom.
Answer:
4 electric pole is the answer.
Answer:
v_f = 6.92 x 10^(4) m/s
Explanation:
From conservation of energy,
E = (1/2)mv² - GmM/r
Where M is mass of sun
Thus,
E_i = E_f will give;
(1/2)mv_i² - GmM/(r_i) = (1/2)mv_f² - GmM/(r_f)
m will cancel out to give ;
(1/2)v_i² - GM/(r_i) = (1/2)v_f² - GM/(r_f)
Let's make v_f the subject;
v_f = √[(v_i)² + 2MG((1/r_f) - (1/r_i))]
G is Gravitational constant and has a value of 6.67 x 10^(-11) N.m²/kg²
Mass of sun is 1.9891 x 10^(30) kg
v_i = 2.1×10⁴ m/s
r_i = 2.5 × 10^(11) m
r_f = 4.9 × 10^(10) m
Plugging in all these values, we have;
v_f = √[(2.1×10⁴)² + 2(1.9891 x 10^(31)) (6.67 x 10^(-11))((1/(4.9 × 10^(10))) - (1/(2.5 × 10^(11)))] 20.408 e12
v_f = √[(441000000) + 2(1.9891 x 10^(30)) (6.67 x 10^(-11))((16.408 x 10^(-12))]
v_f = √[(441000000) + (435.38 x 10^(7))
v_f = 6.92 x 10^(4) m/s