Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
Mass of water because then it will change his States of matter
It is A. Quanta, have a nice day!!
Answer:
Explanation:The pi-molecular orbitals in propene (CH3-CH=CH2) are essentially the ... This central carbon thus provides two p-orbitals – one for each pi bond – and these two different p-orbitals have to be perpendicular, leading to a twisted structure as shown: ... It all comes down to where the location of the electron-deficient carbon
Answer:
Magnetic fields and Electric fields
Explanation: