Answer:
The four stages of technological design include identifying a need, designing and implementing a solution, and evaluating the solution.
I don't know what the options are, cause you didn't show them but, hope this helped.
Answer:
- Compress
- Fixed
- Melts
- Melting Point
- Freezing Point
- High
- Crystalline
- Lattice
- Unit cell
- Amorphous solids
Explanation:
Solids tend to be dense and difficult to <u>compress.</u>
They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around <u>fixed</u> points.
When a solid is heated until its particles vibrate so rapidly that they are no longer held in fixed positions, the solid <u>melts</u>.
<u>Melting point</u> is the temperature at which a solid changes to a liquid. The melting and <u>freezing point</u> of a substance are at the same temperature.
In general, ionic solids tend to have relatively <u>high</u> melting points, while molecular solids tend to have relatively low melting points.
Most solids are <u>crystalline</u>
The particles are arranged in a pattern known as a crystal <u>lattice</u>
The smallest subunit of a crystal lattice is the <u>unit cell</u>
Some solids lack an ordered internal structure and are called <u>amorphous solids.</u>
<u>Solution and Explanation:</u>
[La3+] = 0.1 M
<u>At the equilibrium:
</u>
La(IO3)3 <----> La3+ + 3 IO3-
0.1 +s 3s
![\mathrm{Ksp}=[\mathrm{La} 3+][\mathrm{IO} 3-]^{\wedge} 3](https://tex.z-dn.net/?f=%5Cmathrm%7BKsp%7D%3D%5B%5Cmathrm%7BLa%7D%203%2B%5D%5B%5Cmathrm%7BIO%7D%203-%5D%5E%7B%5Cwedge%7D%203)

Since Ksp is small, s can be ignored as compared to the 0.1
The above shown expression thus becomes:



<u>Answer: 1.4*10^-4 M
</u>
Low
Water is better at sticking together with other water molecules than it is with the "waxy surfaces".
Mass of medicinal agent taken = 1.2 g
the volume is 60 mL
Specific gravity = 1.20
So the mass of solution = specific gravity X volume = 1.20 * 60 = 72g
Now if we have increased the volume by 0.2 so the new volume = 60.2
New mass = 72 + 1.2 = 73.2
Specific gravity = mass / volume = 73.2 / 60.2 = 1.22 g/mL