1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
3 years ago
13

An electron in a vacuum chamber is fired with a speed of 7400 km/s toward a large, uniformly charged plate 75 cm away. The elect

ron reaches a closest distance of 15 cm before being repelled.
What is the plate's surface charge density?
Physics
1 answer:
Klio2033 [76]3 years ago
4 0

Answer:

2.29e-9C/m²

Explanation:

Using E = σ/ε₀ means the force on the electron is F = eE = eσ/ε₀.

The work done on the electron is W = Fd = deσ/ε₀. This equals the kinetic energy lost, ½mv².

½mv² = deσ/ε₀

d = 75cm – 15cm = 60cm = 0.6m

σ = mv²ε₀/(2de)

. .= 9.11e-31 * (7.4e6)² * 8.85e-12 / (2 * 0.6 * 1.6e-19)

. .= 2.29e-9 C/m² (i.e. 2.29x10^-9 C/m²)

You might be interested in
Calculate curls of the following vector functions (a) AG) 4x3 - 2x2-yy + xz2 2
aleksandr82 [10.1K]

Answer:

The curl is 0 \hat x -z^2 \hat y -4xy \hat z

Explanation:

Given the vector function

\vec A (\vec r) =4x^3 \hat{x}-2x^2y \hat y+xz^2 \hat z

We can calculate the curl using the definition

\nabla \times \vec A (\vec r ) = \left|\begin{array}{ccc}\hat x&\hat y&\hat z\\\partial/\partial x&\partial/\partial y&\partial/\partial z\\A_x&X_y&A_z\end{array}\right|

Thus for the exercise we will have

\nabla \times \vec A (\vec r ) = \left|\begin{array}{ccc}\hat x&\hat y&\hat z\\\partial/\partial x&\partial/\partial y&\partial/\partial z\\4x^3&-2x^2y&xz^2\end{array}\right|

So we will get

\nabla  \times \vec A (\vec r )= \left( \cfrac{\partial}{\partial y}(xz^2)-\cfrac{\partial}{\partial z}(-2x^2y)\right) \hat x - \left(\cfrac{\partial}{\partial x}(xz^2)-\cfrac{\partial}{\partial z}(4x^3) \right) \hat y + \left(\cfrac{\partial}{\partial x}(-2x^2y)-\cfrac{\partial}{\partial y}(4x^3) \right) \hat z

Working with the partial derivatives we get the curl

\nabla  \times \vec A (\vec r )=0 \hat x -z^2 \hat y -4xy \hat z

6 0
3 years ago
When Dr. Montero was observing the endoplasmic reticulum of a cell using an electron microscope, she noticed that it was covered
Vesnalui [34]
The answer is Convoluted endoplasmic reticulum
7 0
3 years ago
A -turn rectangular coil with length and width is in a region with its axis initially aligned to a horizontally directed uniform
madam [21]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The maximum emf is \epsilon_{max}= 26.8 V

The emf induced at t = 1.00 s is \epsilon = 24.1V

The maximum rate of change of magnetic flux is   \frac{d \o}{dt}|_{max}  =26.8V

Explanation:

    From the question we are told that

        The number of turns is N = 44 turns

          The length of the coil is  l = 15.0 cm = \frac{15}{100} = 0.15m

          The width of the coil is  w = 8.50 cm =\frac{8.50}{100} =0.085 m

          The magnetic field is  B = 745 \ mT

          The angular speed is w = 64.0 rad/s

Generally the induced emf is mathematically represented as

        \epsilon = \epsilon_{max} sin (wt)

 Where \epsilon_{max} is the maximum induced emf and this is mathematically represented as

            \epsilon_{max} = N\ B\ A\ w

Where \o is the magnetic flux

            N is the number of turns

             A is the area of the coil which is mathematically evaluated as

             A = l *w

        Substituting values

           A = 0.15 * 0.085

               = 0.01275m^2

substituting values into the equation for  maximum induced emf

         \epsilon_{max} = 44* 745 *10^{-3} * 0.01275 * 64.0

                 \epsilon_{max}= 26.8 V

 given that the time t = 1.0sec

substituting values into the equation for induced emf  \epsilon = \epsilon_{max} sin (wt)

      \epsilon = 26.8 sin (64 * 1)

        \epsilon = 24.1V

   The maximum induced emf can also be represented mathematically as

              \epsilon_{max} = \frac{d \o}{dt}|_{max}

  Where  \o is the magnetic flux and \frac{d \o}{dt}|_{max} is the maximum rate at which magnetic flux changes the value of the maximum rate of change of magnetic flux is

         \frac{d \o}{dt}|_{max}  =26.8V

8 0
3 years ago
What are earths two main motions called
andre [41]
Rotation and revolution
3 0
3 years ago
What kind of fluctuations in weather patterns do you expect to see in your area? Will the fluctuations or changes vary by month,
balandron [24]
Prevailing definitions of climate are not much different from “the climate is what you expect, the weather is what you get”. Using a variety of sources including reanalyses and paleo data, and aided by notions and analysis techniques from Nonlinear Geophysics, we argue that this dictum is fundamentally wrong. <span>In addition to the weather and climate, there is a qualitatively distinct intermediate regime extending over a factor of ≈ 1000 in scale.Climate changes is projected to affect individual organisms, populations, ... Overall, there is a strong correlation between topographic slope and velocity from ... the ecosystems they live in—will adapt to these changes, or if they even can.</span>
6 0
3 years ago
Other questions:
  • Suppose you could fit 100 dimes, end to end, between your card with the pinhole and your dime-sized sunball. how many suns could
    14·1 answer
  • (a) Find the acceleration of B.<br>(b) Find the tensions, T1 and T2, in the strings.
    10·1 answer
  • Why do you think the temperature does not change much during a phase change? If possible, discuss your answer with your classmat
    11·1 answer
  • A highway patrol car traveling a constant speed of 105 km/h is passed by a speeding car traveling 140 km/h. Exactly 1.00 s after
    6·1 answer
  • Multiply 0.00032 cm by 4.02 cm and express the answer in scientific notation
    7·2 answers
  • Kevin is refinishing his rusty wheelbarrow. He moves his sandpaper back and forth 45 times over a rusty area, each time moving a
    10·1 answer
  • 5 points
    6·1 answer
  • Food that is cooked properly can no longer be contained. True or false
    15·1 answer
  • Consider an alien on a planet with an acceleration of gravity equal to 20 m/sec^2. If the alien's mass is 10 kg, how much does t
    13·1 answer
  • Which forces are contact forces give one example of each​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!