We learned that We are in the disk of the Galaxy, about 5/8 of the way from the center.
<h3>What is the work of Harlow Shapley?</h3>
Shapley, who was headquartered in Boulder, Colorado, used Cepheid variable stars to estimate the size of the Milky Way Galaxy and its position relative to the Sun. In 1953, he published his "liquid water belt" theory, today known as the concept of a livable zone.
There are many stars, grains of dust, and gas in the Milky Way. It is known as a spiral galaxy because, from the top or bottom, it would appear to be whirling like a pinwheel. About 25,000 light-years from the galaxy's nucleus, the Sun is situated on one of the spiral arms.
Approximately 5/8 of the way from the galaxy's nucleus, we are in the disc. William Herschel believed that the Sun and Earth were about in the middle of the vast cluster of stars known as the Milky Way.
To learn more about Harlow Shapley's original estimate go to - brainly.com/question/28145909
#SPJ4
F = net force acting on the elevator in upward direction = 3000 N
m = mass of the elevator = 1200 kg
a = acceleration of the elevator = ?
Acceleration of the elevator is given as
a = F/m
a = 3000/1200
a = 2.5 m/s²
v₀ = initial velocity of the elevator = 0 m/s
Y = displacement of the elevator = 15 m
t = time taken
Using the kinematics equation
Y = v₀ t + (0.5) a t²
15 = (0) t + (0.5) (2.5) t²
t = 3.5 sec
Answer:
a) m_v = m_s ((
)² - 1) , b) m_v = 1.07 10⁻¹⁴ g
Explanation:
a) The angular velocity of a simple harmonic motion is
w² = k / m
where k is the spring constant and m is the mass of the oscillator
let's apply this expression to our case,
silicon only
w₉² =
k = w₀² m_s
silicon with virus
w² =
k = w² (m_v + m_s)
in the two expressions the constant k is the same and q as the one property of the silicon bar, let us equal
w₀² m_s = w² (m_v + m_s)
m_v = (
)² m_s - m_s
m_v = m_s ((
)² - 1)
b) let's calculate
m_v = 2.13 10⁻¹⁶ [(
)² - 1)]
m_v = 1.07 10⁻¹⁴ g
Answer:
1070 Hz
Explanation:
First, I should point out there might be a typo in the question or the question has inconsistent values. If the tube is 40 cm long, standing waves cannot be produced at 42.5 cm and 58.5 cm lengths. I assume the length is more than the value in the question then. Under this assumption, we proceed as below:
The insert in the tube creates a closed pipe with one end open and the other closed. For a closed pipe, the difference between successive resonances is a half wavelength
.
Hence, we have

.
The speed of a wave is the product of its wavelength and its frequency.


