Answer:
The friction force acting on the object is 7.84 N
Explanation:
Given;
mass of object, m = 4 kg
coefficient of kinetic friction, μk = 0.2
The friction force acting on the object is calculated as;
F = μkN
F = μkmg
where;
F is the frictional force
m is the mass of the object
g is the acceleration due to gravity
F = 0.2 x 4 x 9.8
F = 7.84 N
Therefore, the friction force acting on the object is 7.84 N
Answer:
The angle of incidence is greater than the angle of refraction
Explanation:
Refraction occurs when a light wave passes through the boundary between two mediums.
When a ray of light is refracted, it changes speed and direction, according to Snell's Law:
where
:
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence (the angle between the incident ray and the normal to the boundary)
is the angle of refraction (the angle between the refracted ray and the normal to the boundary)
In this problem, we have a ray of light passing from air into clear plastic. We have:
(index of refraction of air)
approx. (index of refraction in clear plastic)
Snell's Law can be rewritten as

And since
, we have

And so

Which means that
The angle of incidence is greater than the angle of refraction
Answer:
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Newton's third law states that if an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
True
The half-life isn’t applicable to a first order reaction because it does not rely on the concentration of reactant present. However the 2nd order reaction is dependent on the concentration of the reactant present.
The relationship between the half life and the reactant is an inverse one.
The half life is usually reduced or shortened with an increase in the concentration and vice versa.