Answer:
5.5 N at 50.8° north of west.
Explanation:
To find the resultant of these forces, we have to resolve each force along the x- and y-direction, then find the components of the resultant force, and then calculate the resultant force.
The three forces are:
(east)
(west)
(at 60° north of west)
Taking east as positive x-direction and north as positive y-direction, the components of the forces along the 2 directions are:
Threfore, the components of the resultant force are:
Therefore, the magnitude of the resultant force is
And the direction is:
And since the x-component is negative, it means that this angle is measured as north of west.
Answer:
ok
Explanation:
hi how was your day?
stay safe hope you have a good day
Well at the fourth half-life it would be 6.25% so if you continue calculating the answer would be B.
Answer:
roof bow upwards
Explanation:
The top of the roof of the small ranger vehicle will bow upwards. This is as a result of gas pressure on the soft ragtop roof.
- As air begins to fill the vehicle, pressure resonates in all direction proportionally.
- The pressure of the air will be greater than that which the roof can withstand and this forces the roof sky up.
- It is a common scene when we see roof of ragtop vehicles bowing upwards into the sky.
Answer:
The solution(s) are in order with respect to the attachments
Joules ; 5. Adding the same amount of heat to two different objects will produce the same increase in temperature ; 2. Same speed in both ; 2. A
Explanation:
Diagram 1 ( Liquid Nitrogen ) : So as you can see, we want our units in Joules here, and can therefore multiply the mass of gaseous nitrogen and the latent heat of liquid nitrogen, to cancel the units kg, and receive our solution - in terms of Joules. Let's do it.
q ( energy removed ) = mass of nitrogen latent heat of liquid nitrogen,
q = 1.3 kg 2.01 10⁵ J / kg = = = = Joules = kiloJoules = 2.613 10⁵Joules is the energy that must be removed
Diagram 2 : The same amount of heat does not necessarily mean the same increase in temperature for two different objects. The increase in temperature depends on the specific heat capacity of the substance. Therefore your solution is 5 ) Adding the same amount of heat to two different objects will produce the same increase in temperature.
Diagram 3 : The temperatures in both glasses are the same, and hence the molecules have the same average speed. Therefore your solution is 2 ) Same speed in both.
Diagram 4 : Glass A has more water molecules, and hence has more thermal energy. Your solution is 2 ) A.