Let point A be 0.0 miles (first city)
Let point B be 160.5 miles (first city to second city)
Let point C be 28.5 miles (first city to mail stop)
Take C – A = C [28.5 - 0.0 = 28.5] (This checks the distance between city 1 and Mail stop)
Then Take B – C = Distance from the first city to the second city [160.5 - 28.5 = 132 Miles]
Answer: The Mail stop is 132 miles from the Second City.
Concept:
Frequency- It is defined as the number of oscillations occur in one second.
Its SI unit is Hertz (Hz)
Given: Produced sound vibrations is 18,500 cycles in 0.75 seconds
∵ In 0.75 second, produced sound has oscillations = 18,500 cycles
∴ In 1.0 second, produced sound has oscillations = (18,500 ÷ 0.75) Hz
The frequency of the sound will be ≈ 24,667 Hz
From the study of the given graph, only the animals (c) Cats, (b) Moths and (a) Bats can hear the produced sound because their upper audible frequency range is greater than 24,667 Hz.
Answer:
0.12
Explanation:
The acceleration due to gravity of a planet with mass M and radius R is given as:
g = (G*M) / R²
Where G is gravitational constant.
The mass of the planet M = 3 times the mass of earth = 3 * 5.972 * 10^24 kg
The radius of the planet R = 5 times the radius of earth = 5 * 6.371 * 10^6 m
Therefore:
g(planet) = (6.67 * 10^(-11) * 3 * 5.972 * 10^24) / (5 * 6.371 * 10^6)²
g(planet) = 1.18 m/s²
Therefore ratio of acceleration due to gravity on the surface of the planet, g(planet) to acceleration due to gravity on the surface of the planet, g(earth) is:
g(planet)/g(earth) = 1.18/9.8 = 0.12
Answer:
q = 0.036 C
Explanation:
Given that,
Current passes through a defibrillator, I = 18 A
Time, t = 2 ms
We need to find the charge moved during this time. We know that,
Electric current = charge/time

Put all the values,

So, 0.036 C of charge moves during this time.
Answer:
The volume of copper is 2.198 ml
Explanation:
Given;
mass of copper, m = 20 g
density of copper, ρ = 9.1 g/ml
Density is given by;
Density = mass / volume
Volume = mass / density
Volume = (20 g) / (9.1 g/ml)
Volume = 2.198 ml
Therefore, the volume of copper is 2.198 ml