1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
4 years ago
14

Water can dissolve almost anything in the universe

Physics
1 answer:
Elodia [21]4 years ago
5 0

Answer:

No, its not possible for water to dissolve almost anything in the universe.

Explanation:

Solubility of a solute defines the ability of that solute to dissolve in a given solvent. It is defined as the maximum amount of solute dissolved in a solvent at equilibrium. The solution which results from dissolving this maximum amount is called a saturated solution, and one it has been reached, no more solute can be dissolved in it.

Different substances in the universe have diffferent solubilities in water, some very high (soluble) (eg. sugar and salt) and some very low (insoluble) (eg plastics). The substances that are able to form bonds with water (Hydrogen or Ionic) are more soluble than those who are not able to do so.

You might be interested in
1. una masa oscila a la frecuencia de 3Hz y con una amplitud de 6cm. ¿cuáles serán sus posiciones en los tiempos t=0 y t= 3.22 s
alisha [4.7K]

Answer:

yes

Explanation:dccdcc

3 0
3 years ago
On a distance-time graph, time is shown on the y-axis.<br> A) True<br> B) False
Artist 52 [7]

Answer:

false : In distance time graph,time is shown on the x -axis

7 0
3 years ago
A car has a mass of 1520 kg. While traveling at 20 m⁄s, the driver applies the brakes to stop the car on a wet surface with a 0.
docker41 [41]

Answer:

(a)d₁ = 51.02 m

(b)d₂ =51.02m

Explanation:

Newton's second law:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass s (kg)

a : acceleration  (m/s²)

Known data

m=1520 kg  : mass of the  car

μk= 0.4 : coefficient of kinetic friction

g = 9.8 m/s² : acceleration due to gravity

Forces acting on the car

We define the x-axis in the direction parallel to the movement of the  car and the y-axis in the direction perpendicular to it.

W: Weight of the block : In vertical direction  downward

FN : Normal force :  In vertical direction  upward

f : Friction force:  In horizontal direction  

Calculated of the W

W= m*g

W=  1520 kg* 9.8 m/s² = 14896 N

Calculated of the FN

We apply the formula (1)

∑Fy = m*ay    ay = 0

FN - Wy = 0

FN = Wy

FN = 14896 N

Calculated of the f

f = μk* N= (0.4)* (14896 N )

f = 5958.4 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

- f = m*a

-5958.4 = (1520)*a

a  =  (-5958.4) /  ((1520)

a = -3.92 m/s²

(a) displacement of the car (d₁)

Because the car moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d₁ Formula (2)

Where:  

d:displacement  (m)

v₀: initial speed  (m/s)

vf: final speed   (m/s)

Data:

v₀ = 20 m⁄s

vf = 0

a = --3.92 m/s²

We replace data in the formula (2)  to calculate the distance along the ramp the block reaches before stopping (d₁)

vf²=v₀²+2*a*d ₁

0 = (20)²+2*(-3.92)*d ₁

2*(3.92)*d₁  = (20)²

d₁ = (20)² / (7.84)

d₁  = 51.02 m

(b)  Different car

m₂ = 1.5 *1520 kg

μk₂= 0.4

W₂= m*g

W₂=   (1.5) *1520 kg* 9.8 m/s² = (1.5)*14896 N  

FN₂=  (1.5)*14896 N  

f= 0.4* (1.5)*14896 N  

a = - f/m₂ = - 0.4* (1.5)*14896 N  /(1.5) *1520

a = -3.92   m/s²

vf²=v₀²+2*a*d₂

vf=0 , v₀=20 m⁄s , a = -3.92   m/s²

d₂ = d₁ = 51.02m

6 0
4 years ago
Julie drives 100 mi to Grandmother's house. On the way to Grandmother's, Julie drives half the distance at 20 mph and half the d
Gnoma [55]

Answer:

On the way to grandmother´s, the average speed was 30 mph. On the way back, the average speed was 40 mph.

Explanation:

The average speed is given by the variation of the position over time.

Mathematically:

ΔX / Δt = v

where:

ΔX = distance (final position - initial position)

Δt = time (final time - initial time)

v = speed

On the way to Grandmother´s, we can calculate how much time Julie drove at each speed:

ΔX / Δt = v

ΔX / v = Δt

50 mi / 20 mph = 2.5 h

In the same way, we can calculate how much time she drove at 60 mph:

50 mi / 60 mph = 0.83 h

In total, she drove a distance of 100 mi in (2.5 h + 0.83 h) 3.33 h. Then, the average speed on the way to Grandmother´s was:

<u>ΔX / Δt = v = 100 mi / 3.33 h = 30 mph</u>

In the return trip, we do not know the distance nor the time that she drove at each speed, but we know that for each part of the trip, the time is the same (Δt)  and we also know that the total distance is 100 mi and the total time is 2Δt:

v1 = ΔX1 / Δt

v2 = ΔX2 / Δt

ΔX2 + ΔX1  = 100

where

v1 = speed during the first part of the trip (20 mph)

v2 = speed during the second part of the trip (60 mph)

ΔX1 = distance driven at 20 mph

ΔX2 = distance driven at 60 mph

Δt = time

If we divide v2/v1, we will get:

v2/v1 = (ΔX2 / Δt) / (ΔX1 / Δt)

60 mph / 20 mph = ΔX2 / ΔX1

3 = ΔX2 / ΔX1

3ΔX1 = ΔX2

Then we can replace ΔX2 for 3ΔX1 in this equation:

ΔX2 + ΔX1  = 100 mi

3ΔX1 + ΔX1 = 100 mi

4ΔX1 = 100 mi

ΔX1 = 25 mi

And now, we can solve Δt from the equation of v1:

v1 = ΔX1 / Δt

Δt = ΔX1 / v1 = 25 mi / 20 mph = 1.25 h

The average speed on the return trip is then:

<u>v = 100 mi / 2Δt = 100 mi / 2.5 h = 40mph</u>

8 0
4 years ago
What height will the object reach? 12 points. Will give brainliest.
umka21 [38]

Answer:

12.7 m

Explanation:

The following data were obtained from the question:

Initial velocity (u) = 56.7 Km/hr

Maximum height (h) =..?

First, we shall convert 56.7 Km/hr to m/s. This can be obtained as follow:

Initial velocity (m/s) = 56.7 x 1000/3600

Initial velocity (m/s) = 15.75 m/s

Next, we shall determine the time taken to get to the maximum height. This can be obtained as follow:

Initial velocity (u) = 15.75 m/s

Final velocity (v) = 0 m/s

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) =?

v = u – gt (since the ball is going against gravity)

0 = 15.75 – 9.8 × t

Rearrange

9.8 × t = 15.75

Divide both side by 9.8

t = 15.75/9.8

t = 1.61 secs.

Finally, we shall determine the maximum height as follow

h = ½gt²

Acceleration due to gravity (g) = 9.8 m/s²

Time (t) = 1.61 secs.

Height (h) =..?

h = ½gt²

h = ½ × 9.8 × 1.61²

h = 4.9 x 1.61²

h = 12.7 m

Therefore, the maximum height reached by the ball is 12.7 m

3 0
3 years ago
Other questions:
  • PLEASE HELP ANSWER FAST As the vibration of molecules decreases, the _____ of the substance decreases. 1.temperature 2.internal
    7·1 answer
  • 4. A student wants to determine what type of cereal his classmates like best. He buys 3 boxes of his most favorite puffed rice c
    12·1 answer
  • The saturated adiabatic lapse rate is a lesser lapse rate than the dry adiabatic lapse rate. This is because _
    5·1 answer
  • When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the
    8·1 answer
  • How do nonmetals form bonds
    6·2 answers
  • 12.
    7·2 answers
  • Blank is anything that has mass and takes up space.
    11·2 answers
  • What is the cheetahs momentum?
    8·1 answer
  • State Newton second law of motion​
    7·1 answer
  • Accelerates uniformly at 2.0 ms2 for 10.0s. Calculate its final velocity​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!