Answer:
-4.0 N
Explanation:
Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):
(1)
We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

And we can fidn the acceleration by using the formula:

where
v = 0 is the final velocity
u = 1.75 m/s is the initial velocity
t = 2.25 s is the time the box needs to stop
Substituting, we find

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)
Therefore, substituting into eq.(1) we find the force of friction:

Where the negative sign means the direction of the force is opposite to the motion of the box.
Answer:
The tangential speed of the tack is 6.988 meters per second.
Explanation:
The tangential speed experimented by the tack (
), measured in meters per second, is equal to the product of the angular speed of the wheel (
), measured in radians per second, and the distance of the tack respect to the rotation axis (
), measured in meters, length that coincides with the radius of the tire. First, we convert the angular speed of the wheel from revolutions per second to radians per second:


Then, the tangential speed of the tack is: (
,
)


The tangential speed of the tack is 6.988 meters per second.
Force is equal to mass multiplied by acceleration, therefore
F=ma
m=2569.6 kg
a=4.65m/s^2
therefore F=2569.6*4.65=11948.6 (correct to 1 d.p.)