Complete question is;
Jason works for a moving company. A 75 kg wooden crate is sitting on the wooden ramp of his truck; the ramp is angled at 11°.
What is the magnitude of the force, directed parallel to the ramp, that he needs to exert on the crate to get it to start moving UP the ramp?
Answer:
F = 501.5 N
Explanation:
We are given;
Mass of wooden crate; m = 75 kg
Angle of ramp; θ = 11°
Now, for the wooden crate to slide upwards, it means that the force of friction would be acting in an opposite to the slide along the inclined plane. Thus, the force will be given by;
F = mgsin θ + μmg cos θ
From online values, coefficient of friction between wooden surfaces is μ = 0.5
Thus;
F = (75 × 9.81 × sin 11) + (0.5 × 75 × 9.81 × cos 11)
F = 501.5 N
Well,
For the first one, the answer would be C, because all organisms in Kingdom Animalia must eat in order to survive.
For the second one, all of the options are in Kingdom Animalia, but worms (A) and clams (C) are invertebrates. So that leaves options B and D.
Answer:
1.736m/s²
Explanation:
According to Newton's second law;

where;
Fm is the moving force = 70.0N
Ff is the frictional force acting on the body

is the coefficient of friction
m is the mass of the object
g is the acceleration due to gravity
a is the acceleration/deceleration
The equation becomes;

Substitute the given parameters

Hence the deceleration rate of the wagon as it is caught is 1.736m/s²
Answer:
ACTION REACTION FORCES
Explanation:
When there is an action frce there will be a reaction force
Answer:
μ = 0.33
Equal to 3.2 m/s²
Explanation:
Draw a free body diagram of the block. There are three forces:
Normal force N pushing up.
Weight force mg pulling down.
Friction force Nμ pushing opposite the direction of motion.
Sum of forces in the y direction.
∑F = ma
N − mg = 0
N = mg
Sum of forces in the x direction.
∑F = ma
Nμ = ma
Substitute.
mgμ = ma
μ = a/g
μ = (3.2 m/s²) / (9.8 m/s²)
μ = 0.33
As found earlier, the acceleration is a = gμ. Since g and μ are constant, a is also constant, so it does not change with velocity.