D) Guard against a short circuit electrocuting a user.
"The 4-wire setup is inherently safer and better able to prevent electrical shock, which in the case of a 220/240-volt circuit can be fatal."
Answer:
Hope this help you!!
Explanation:
Crust : The crust is the thinnest layer of the Earth. It has an average thickness of about 18 miles below land, and around 6 miles below the oceans. The crust is the layer that makes up the Earth's surface and it lies on top of a harder layer, called the mantle.
Mantle : The mantle is the mostly-solid bulk of Earth's interior. The mantle lies between Earth's dense, super-heated core and its thin outer layer, the crust. The mantle is about 1,802 miles thick, and makes up a whopping 84% of Earth's total volume
Outer Core : The outer core is the third layer of the Earth. It is the only liquid layer, and is mainly made up of the metals iron and nickel, as well as small amounts of other substances. The outer core is responsible for Earth's magnetic field. As Earth spins on its axis, the iron inside the liquid outer core moves around.
Inner Core : It's Almost The Size of the Moon. The Earth's inner core is surprisingly large, measuring 1,516 miles across. It's Mostly Made of Iron. It Spins Faster Than the Surface of the Earth. It Creates a Magnetic Field.
Answer:
1.52 nm
Explanation:
Using the De Broglie wavelength equation,
λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s
So, λ = h/p
λ = h/mv
substituting the values of the variables into the equation, we have
λ = h/mv
λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)
λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)
λ = 0.1518 × 10⁻⁸ m
λ = 1.518 × 10⁻⁹ m
λ = 1.518 nm
λ ≅ 1.52 nm
Answer: 1.55 x 10⁴ Nm²c^-1
Explanation: The electric flux, electric field intensity and area are related by the formulae below.
Φ= EAcosθ,
Where Φ= electric flux (Nm²c^-1)
E =electric field intensity (N/m²)
A = Area (m²)
θ= this is angle between the planar area and the magnetic flux
For our question E=3.80KN/c= 3800 N/c
A= 0.700 x 0.350= 0.245m²
θ= 0° ( this is because the electric field was applied along the x axis, thus the electric flux will be parallel to the area).
Hence Φ= 3800 x 0.245 x cos(0)
= 3800 x 0.245 x 1 (value of cos 0° =1)
= 1.55 x 10⁴ Nm²c^-1
Thus the electric field is 1.55 x 10⁴ Nm²c^-1