Answer:
The magnitude of the electric force between the to protons will be 57.536 N.
Explanation:
We can use Coulomb's law to find out the force, in scalar form, will be:
.
Now, making the substitutions
,
,
,
we can find:
.
.
Not so big for everyday life, but enormous for subatomic particles.
When we say "<span>The moon's surface gravity is one-sixth that of the earth.",
we mean that the acceleration of gravity on the Moon's surface is 1/6 of
the acceleration of gravity on the Earth's surface.
The acceleration of gravity is (9.8 m/s</span>²) on the Earth's surface, so
<span>it would be (9.8/6 m/s</span>²) on the Moon's surface.
<span>
The weight of any object, right now, is
(object's mass) </span>· (acceleration of gravity where the object is located now) .
<span>
If the object's mass is 24 kg and the object is on the Moon right now,
then its weight is
(24 kg) </span>· (9.8/6 m/s²)
= (24 · 9.8 / 6) kg-m/s²
= 39.2 Newtons
Answer:
Check the attached image
Explanation:
To solve the problem for time you will have to use the formula for time, t = d/s which means time equals distance divided by speed.
Kindly check the attached image below for the step by step explanation to the question.
The correct answer is - A. Plants store solar energy; the plants die; the plants are compressed; solar energy is released;
The plants use the solar energy for their functioning, thus they are one of the biggest natural storage of it. The plants also use the CO2 for the process of photosynthesis that is driven by the solar energy. When the plants die, the things inside them are stored in them, and if they are quickly covered they will remain stored and not get back into the atmosphere. The plants than are compressed, and over time that leads to a change in their composition. After millions of years had passed, the solar energy and CO2 had turned into coal. The coal is heavily used by the humans in the past few centuries, and with its burning the solar energy and the CO2 are released back into the atmosphere from which they came millions of years ago.
Answer:
The work is -67.76 J
Explanation:
The law of conservation of energy is considered one of one of the fundamental laws of physics and states that the total energy of an isolated system remains constant. except when it is transformed into other types of energy.
This is summed up in the principle that energy can neither be created nor destroyed in the universe, only transformed into other forms of energy.
In this case you must calculate the loss of kinetic energy. This loss is actually the work done against the resistive force in the air. Friction is the only force other than gravity that acts on the ball.
So, the loss of kinetic energy is 
You know:
- mass=m=0.22 kg
- Initial velocity of the ball:

Final velocity of the ball: 
Replacing:
= -67.76 J
Friction work is always negative because friction is always against displacement.
<u><em>The work is -67.76 J</em></u>