Answer:
9R
Explanation:
We know that the resistance is
.
If we stretch the wire to a new length L2 = 3L, the cross-sectional area will also change. If the cross-sectional area doesn't change throughout the wire, we can say that:
Volume = L*A = 3L * A2 being A2 the new area after stretching the wire.
Since the volume remains the same we conclude that A2 = A/3
With this information, we calculate the new resistance:

Since
, and by simple inspection of the previous equation, we get:
<em>R2 = 9*R</em>
Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Answer:
Explanation:
Given


same charge on both masses
potential Energy due to Magnetic Field =Kinetic Energy of Particle


and we know
Force due to magnetic field will Provide centripetal Force


and B is equal for both particles
thus 



Answer:
A book on its side exerts a greater force.
Explanation:
Pressure = Force / Area
Assuming that 1kg = 10N
2kg = 20N
Area of book lying flat = 0.3m × 0.2m
= 0.6m²
Pressure of book lying flat = 20N / 0.6m²
= 30Pa (1 s.f.)
Area of book on its side = 0.2m × 0.05m
= 0.01m²
Pressure of book on its side = 20N / 0.01m²
= 2000Pa (1 s.f.)
Since 2000Pa (1 s.f.) > 30Pa (1 s.f.), a book on its side applies greater pressure than lying flat.
It stays constant, because it's using that energy to change state