Answer:
The time it will take for the object to hit the ground will be 4.
Explanation:
You have:
h(t)=−16t²+v0*t+h0
Being v0 the initial velocity (54 ft/s) and h0 the initial height (40 ft) and replacing you get:
h(t)=−16t²+54*t+40
To know how long it will take for the object to touch the ground, the height h(t) must be zero. So:
0=−16t²+54*t+40
Being a quadratic function or parabola: f (x) = a*x² + b*x + c, the roots or zeros of the quadratic function are those values of x for which the expression is 0. Graphically, the roots correspond to the points where the parabola intersects the x axis. To calculate the roots the expression is used:

In this case you have that:
Replacing in the expression of the calculation of roots you get:
Expresion (A)
and
Expresion (B)
Solving the Expresion (A):

Solving the Expresion (B):

These results indicate the time it will take for the object to hit the ground can be -5/8 and 4. Since the time cannot be negative, then <u><em>the time it will take for the object to hit the ground will be 4.</em></u>
<span>The larger the current flowing in a wire, the stronger the magnetic field
is that surrounds the wire.
That's why, if you want to make an electromagnet stronger, one way to
do it is to add another battery. By increasing the voltage, you'll increase
the current flowing in the coils of wire, and the electromagnet will be stronger.</span>
Answer:
the answer to your question is C, Amount of mass in a given volume
Explanation:
They got back in the Lunar Explorer Module