1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
9

Ted throws an object straight up into the air with an initial velocity of 54 ft/s from a platform that is 40 ft above the ground

. Use the formula h(t)=−16t2+v0t+h0, where v0 is the initial velocity and h0 is the initial height. How long will it take for the object to hit the ground?
Physics
1 answer:
elena-s [515]3 years ago
6 0

Answer:

The time it will take for the object to hit the ground will be 4.

Explanation:

You have:

h(t)=−16t²+v0*t+h0

Being v0 the initial velocity (54 ft/s) and  h0 the initial height (40 ft) and replacing you get:

h(t)=−16t²+54*t+40

To know how long it will take for the object to touch the ground, the height h(t) must be zero. So:

0=−16t²+54*t+40

Being a quadratic function or parabola: f (x) = a*x² + b*x + c, the roots or zeros of the quadratic function are those values ​​of x for which the expression is 0. Graphically, the roots correspond to the points where the parabola intersects the x axis. To calculate the roots the expression is used:

\frac{-b+-\sqrt{b^{2}-4*a*c } }{2*a}

In this case you have that:

  • a=-16
  • b= 54
  • c= 40

Replacing in the expression of the calculation of roots you get:

\frac{-54+\sqrt{54^{2}-4*(-16)*40 } }{2*(-16)}  Expresion (A)

and

\frac{-54-\sqrt{54^{2}-4*(-16)*40 } }{2*(-16)} Expresion (B)

Solving the Expresion (A):

\frac{-54+\sqrt{5476 } }{2*(-16)}= \frac{-54+74}{2*(-16)}=\frac{20}{2*(-16)}=\frac{20}{-32}= -\frac{5}{8}

Solving the Expresion (B):

\frac{-54-\sqrt{5476 } }{2*(-16)}= \frac{-54-74}{2*(-16)}=\frac{-128}{2*(-16)}=\frac{-128}{-32}= 4

These results indicate the time it will take for the object to hit the ground can be -5/8 and 4. Since the time cannot be negative, then <u><em>the time it will take for the object to hit the ground will be 4.</em></u>

You might be interested in
2. A 75 kg runner accelerates from 0.00 m/s to 10.0 m/s in 1.5 seconds.
raketka [301]
A :-) A.a.) Given - u = 0.00 m/s
v = 10.0 m/s
t = 1.5 sec
m = 75 kg
Solution -
a = v - u by t
a = 10 - 0 by 1.5
a = 10 by 1.5
a = 6.6 m/s^2

A.b.) sorry ! I don’t no how to do this question
3 0
3 years ago
If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the in
wel

The question is incomplete! The complete question along with answer and explanation is provided below.

Question:

A 0.5 kg mass moves 40 centimeters up the incline shown in the figure below. The vertical height of the incline is 7 centimeters.

What is the change in the potential energy (in Joules) of the mass as it goes up the incline?  

If a force of 1.0 N pulled up and parallel to the surface of the incline is required to raise the mass back to the top of the incline, how much work is done by that force?

Given Information:  

Mass = m = 0.5 kg

Horizontal distance = d = 40 cm = 0.4 m

Vertical distance = h = 7 cm = 0.07 m

Normal force = Fn = 1 N

Required Information:  

Potential energy = PE = ?

Work done = W = ?

Answer:

Potential energy = 0.343 Joules

Work done = 0.39 N.m

Explanation:

The potential energy is given by

PE = mgh

where m is the mass of the object, h is the vertical distance and g is the gravitational acceleration.

PE = 0.5*9.8*0.07

PE = 0.343 Joules

As you can see in the attached image

sinθ = opposite/hypotenuse

sinθ = 0.07/0.4

θ = sin⁻¹(0.07/0.4)

θ = 10.078°

The horizontal component of the normal force is given by

Fx = Fncos(θ)

Fx = 1*cos(10.078)

Fx = 0.984 N

Work done is given by

W = Fxd

where d is the horizontal distance

W = 0.984*0.4

W = 0.39 N.m

3 0
3 years ago
Miles is camping in Glacier National Park. In the midst of a glacier canyon,
valentina_108 [34]

Answer:

t=1.623 sec

Explanation:

The distance traveled before the echo is had is:

distance=2d, d=280\ m\\\\=280\times 2\\\\=560 \ m

Given the speed of sound as v=345m/s, we use the speed equation to solve for t:

v=\frac{d}{t}\\\\345\ m/s=\frac{560m}{t}\\\\t=\frac{560}{360}\\\\=1.623 \ s

Hence, it takes 1.623 seconds to hear the echo.

8 0
3 years ago
Heat is added to a 2kg piece of ice at a rate of 793kW. How long will it take for ice to melt if it was initially 0?
Ede4ka [16]

Answer:

0.84 s

Explanation:

Step 1

Given information:

Mass of the ice (m) = 2.0 kg

Heat transfer rate (Q/T) = 793.0 kW

Latent heat of fusion of ice (Lf) = 334 kJ/kg

\frac{Q}{T}  =  \frac{mLf}{T}

Substituting the corresponding values we have:

793.0 kW=  \frac{2.0kg(334 kJ/kg)}{T} \\  T  =  \frac{2.0kg(334 kJ/kg)}{793.0kW}  =  \frac{668kJ}{793kW}   \\  = 0.84s

8 0
3 years ago
A diver is is pushed upwards by a diving board. She weighs 739 N and accelerates from rest to a speed of 4.60 m/s while moving 0
gavmur [86]

Answer:

Answer A

Explanation:

It seems more likely

8 0
3 years ago
Other questions:
  • A gold puck has a mass of 12 kg and a velocity of 5i – 4j m/s prior to a collision with a stationary blue puck whose mass is 18
    13·1 answer
  • An unfortunate astronaut loses his grip during a spacewalk and finds himself floating away from the space station, carrying only
    15·1 answer
  • An object of mass 4 kg is initially at rest on a frictionless ice rink. It suddenly explodes into three pieces (I have no idea w
    12·1 answer
  • If the loop is then converted into a rectangular loop measuring 2.1cm on its shortest side in 6.50ms, and the average emf induce
    15·1 answer
  • Calcular el diámetro que debe tener en el embolo mayor un gato hidráulico, para obtener una fuerza de 3500N. Cuando el embolo me
    12·1 answer
  • Compare and contrast an earthquake and a tsunami.
    15·1 answer
  • Thanks + BRAINLIST <br><br> Need correct answer ASAP
    8·1 answer
  • 3. A moving<br> car covers a distance of 100 km in two hours.<br> What is meant by this?
    8·1 answer
  • Suppose the sphere is positively charged. Is it attracted to, repelled by, or not affected by the magnet?.
    8·1 answer
  • A 60.0-kg skater begins a spin with an angular speed of 6.0 rad/s. By changing the position of her arms, the skater decreases he
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!