Answer:
The energy required to remove the the electrons from gaseous atom is called ionization energy.
Explanation:
Ionization energy:
The amount of energy required to remove the electron from gaseous atom is called ionization energy.
Trend of ionization energy in periodic table:
Along period:
The atomic size tend to decrease in same period of periodic table with increase of atomic number because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
Along group:
Atomic size increases with increase of atomic number from top to bottom. The nuclear attraction on valance shell became weaker and thus it becomes easy to remove an electron from valance shell and this can be done with less amount of energy. That's why ionization energy decreases from top to bottom.
Ethers can't form hydrogen bonds with water and so have a low solubility
hope that helps
<span>Gather your materials. Gather the sand, salt and iron filing mixture; a magnet; a paper towel; a cup of warm water; an empty cup; and a piece of filter paper.Use the magnet to remove the iron. ...Use warm water to dissolve the salt. ...<span>Remove the sand from the salt water.</span></span>
Answer:
D) 2, 4, and 5
Explanation:
In order to fully comprehend the answer choices we must take a close look at the value of ΔH° = 31.05. The enthalpy change of the reaction is positive. A positive value of enthalpy of reaction implies that heat was absorbed in the course of the reaction.
If heat is absorbed in a reaction, that reaction is endothermic.
Since ∆Hreaction= ∆H products -∆H reactants, a positive value of ∆Hreaction implies that ∆Hproducts >∆Hreactants, hence the answer choice above.
The answer is true. I might be wrong