Answer:
limiting reactant started with/limiting reactant needed=
= 3.5 mol/3.5 mol=1:1
Explanation:
2H2 + 1 O2 ---> 2 H2O
from reaction 2 mol 1 mol
given 3.5 mol 2.5 mol
needed 3.5 mol 1.75 mol
Excess reactant O2, Limiting reactant H2.
Limiting reactant will be used completely.
So, limiting reactant started with/limiting reactant needed=
= 3.5 mol/3.5 mol=1:1
Sugar is the solute since it is the thing that is being dissolved.
And the water is the solvent since it is the thing that contains the solute.
Answer:
14 grams of calcium oxide would be produced by thermal decomposition of 25 grams of calcium carbonate.
Explanation:
You know:
CaCO₃ → CaO + CO₂
In the first place, by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction) the following quantities react and are produced:
- CaCO₃: 1 mole
- CaO: 1 mole
- CO₂: 1 mole
Being:
- Ca: 40 g/mole
- C: 12 g/mole
- O: 16 g/mole
the molar mass of the compounds participating in the reaction is:
- CaCO₃: 40 g/mole + 12 g/mole + 3*16 g/mole= 100 g/mole
- CaO: 40 g/mole + 16 g/mole= 56 g/mole
- CO₂: 12 g/mole + 2*16 g/mole= 44 g/mole
Then, by stoichiometry of the reaction, the following mass amounts of the compounds participating in the reaction react and are produced:
- CaCO₃: 1 mole* 100 g/mole= 100 g
- CaO: 1 mole* 56 g/mole= 56 g
- CO₂: 1 mole* 44 g/mole= 44 g
You can then apply the following rule of three: if by stoichiometry of the reaction 100 grams of calcium carbonate CaCO₃ produce 56 grams of calcium oxide CaO, 25 grams of CaCO₃ how much mass of CaO will it produce?

mass of calcium oxide= 14 grams
<em><u>
14 grams of calcium oxide would be produced by thermal decomposition of 25 grams of calcium carbonate.</u></em>
<h3><u> Answer</u>;</h3>
= 4.0 L
<h3><u>Explanation;</u></h3>
Boyle's law states that the volume of a fixed mass of a gas is inversely proportional to pressure at a constant temperature.
Therefore; <em>Volume α 1/pressure</em>
<em>Mathematically; V α 1/P</em>
<em>V = kP, where k is a constant;</em>
<em>P1V1 = P2V2</em>
<em>V1 = 0.5 l, P1 =203 kPa, P2 = 25.4 kPa</em>
<em>V2 = (0.5 × 203 )/25.4 </em>
<em> = 3.996 </em>
<em> ≈ </em><em><u>4.0 L</u></em>