Answer:
You are given:
4Fe+3O_2 -> 2Fe_2O_3
4:Fe:4
6:O_2:6
You actually have the same number of Fe on both sides, The same is true for O_2 so yes this equation is properly balanced.
For added benefit consider the following equation:
CH_4+O_2-> CO_2+2H_2O
ASK: Is this equation balanced? Quick answer: No
ASK: So how do we know and how do we then balance it?
DO: Count the number of each atom type you have on each side of the equation:
1:C:1
4:H:4
2:O:4
As you can see everything is balanced except for O To balance O we can simply add a coefficient of 2 in front of O_2 on the left side which would result in 4 O atoms:
CH_4+color(red)(2)O_2-> CO_2+2H_2O
1:C:1
4:H:4
4:O:4
Everything is now balanced.
Step-by-step explanation:
ANSWER: 2y^2 + 13y +51 r(219/y-4)
picture explanation too:
Answer:
15625
Step-by-step explanation:
Lets use the information to present the question into mathematical form:

so this means -5 is multiplying itself 6 times so this means
value of negative 5 superscript 6 means
= -5 x -5 x -5 x -5 x -5 x -5
so the answer is 15625
If the number line is drawn with the smaller number on the left and the larger number on the right, then
c. To the right of B
Answer:
b1 = 2 ; r = 3
Step-by-step explanation:
Given that :
if b3 −b1 = 16 and b5 −b3 = 144.
For a geometric series :
Ist term = a
Second term = ar
3rd term = ar^2
4th term = ar^3
5th term = ar^4 ;...
If b3 - b1 = 16;
ar^2 - a = 16
a(r^2 - 1) = 16 - - - (1)
b5 - b3 = 144
ar^4 - ar^2 = 144
ar^2(r^2 - 1) = 144 - - - - (2)
Divide (1) by (2)
a(r^2 - 1) / ar^2(r^2 - 1) = 16 /144
a / ar^2 = 1 / 9
ar^2 = 9a
Substitute for a in ar^2 - a = 16
9a - a = 16
8a = 16
a = 2
From ar^2 - a = 16
2r^2 - 2 = 16
2r^2 = 16 + 2
2r^2 = 18
r^2 = 18 / 2
r^2 = 9
r = √9
r = 3
Hence ;
a = b1 = 2 ; r = 3