Becuz the sun refelt off the earth and on to the moon.
Answer:
The temperature of the gas is 876.69 Kelvin
Explanation:
Ideal gases are a simplification of real gases that is done to study them more easily. It is considered to be formed by point particles, do not interact with each other and move randomly. It is also considered that the molecules of an ideal gas, in themselves, do not occupy any volume.
The pressure, P, the temperature, T, and the volume, V, of an ideal gas, are related by a simple formula called the ideal gas law:
P*V = n*R*T
where P is the gas pressure, V is the volume that occupies, T is its temperature, R is the ideal gas constant, and n is the number of moles of the gas.
In this case:
- P= 470 mmHg
- V= 570 mL= 0.570 L
- n= 0.216 g= 0.0049 moles (being the molar mass of carbon dioxide is 44 g/mole)
- R= 62.36367

Replacing:
470 mmHg*0.570 L= 0.0049 moles* 62.36367
*T
Solving:

T= 876.69 K
<em><u>The temperature of the gas is 876.69 Kelvin</u></em>
Explanation:
Moles of metal,
=
4.86
⋅
g
24.305
⋅
g
⋅
m
o
l
−
1
=
0.200
m
o
l
.
Moles of
H
C
l
=
100
⋅
c
m
−
3
×
2.00
⋅
m
o
l
⋅
d
m
−
3
=
0.200
m
o
l
Clearly, the acid is in deficiency ; i.e. it is the limiting reagent, because the equation above specifies that that 2 equiv of HCl are required for each equiv of metal.
So if
0.200
m
o
l
acid react, then (by the stoichiometry), 1/2 this quantity, i.e.
0.100
m
o
l
of dihydrogen will evolve.
So,
0.100
m
o
l
dihydrogen are evolved; this has a mass of
0.100
⋅
m
o
l
×
2.00
⋅
g
⋅
m
o
l
−
1
=
?
?
g
.
If 1 mol dihydrogen gas occupies
24.5
d
m
3
at room temperature and pressure, what will be the VOLUME of gas evolved?
25655+6565++65+65+65+56+566+56+556+5+656+56+56+56+56+
The given equation from the problem above is already balance,
N2O5 ---> 2NO2 + 0.5O2
Since, in every mole of N2O5 consumed, 2 moles of NO2 are formed, we can answer the problem by multiplying the given rate, 7.81 mol/L.s with the ratio.
(7.81 mol/L.s) x (2 moles NO2 formed/ 1 mole of N2O5 consumed)
= 15.62 mol/L.s
The answer is the rate of formation of NO2 is approximately 15.62 mol/L.s.