The Patch's area of the space shuttle in km² is 2.07 × 10⁻⁹ km²
Given, that a space shuttle requires a 20.7 cm² patch
We have to convert the patch's area from cm² into km².
Unit conversion is a method in which we multiply or divide with a particular numerical factor and then finally round off to the nearest significant digits.
Patch area of the space shuttle is 20.7 cm²
1 cm = 0.00001 km
or, 1 cm² = (0.00001 km)²
or, 1 cm² = 10⁻¹⁰km²
20.7 cm² = 20.7 × 10⁻¹⁰km²
20.7 cm² = 2.07 × 10⁻⁹ km²
The patch area in square kilometers is 2.07 × 10⁻⁹ km²
To learn more about unit conversion, visit: brainly.com/question/11543684
#SPJ4
The solution is as follows:
The problem would only need the information of 5,600 EJ for the known sources of methane. The molar mass of methane is 16 g/mol.
802 kJ/mol(1000 J/ 1 kJ)(1 mol/16 g)(1000 g/1 kg)(x kg) = 5,600 EJ(10¹⁸ J/1 EJ)
Solving for x,
<em>x = 1.18×10¹⁴ kg of natural gas or methane</em>
Answer:
Mass of Na₂CrO₄ = 5.75 g
Explanation:
First of all we will write the balance chemical equation.
2AgNO₃ + Na₂CrO₄ → Ag₂CrO₄ + 2NaNO₃
Now we will calculate the moles of AgNO₃.
Number of moles = mass / molar mass
Molar mass of AgNO₃ = 107.87 + 14 + 3× 16 = 169.87 g/mol
Number of moles = mass / molar mass
Number of moles = 12.1 g / 169.87 g/mol = 0.071 mol
Now we will compare the moles of AgNO₃ and Na₂CrO₄ from balance chemical equation.
AgNO₃ : Na₂CrO₄
2 : 1
0.071 : 1/2× 0.071 = 0.0355
Now we will calculate the mass of Na₂CrO₄.
Molar mass of Na₂CrO₄ = 23×2 + 52 + 16×4 = 162 g/mol
Mass of Na₂CrO₄ = number of moles × molar mass
Mass of Na₂CrO₄ = 0.0355 mol × 162 g/mol
Mass of Na₂CrO₄ = 5.75 g
Answer:
49°C
Explanation:
Let's apply the Ideal Gases Law in order to solve this question:
P . V = n . R . T
Pressure = 1 atm
Volume = 6 L
n = number of moles → 10 g. 1mol /44g = 0.227 moles
R = Ideal Gases Constant
We replace data: 1 atm . 6 L = 0.227 mol . 0.082 . T
6 atm.L / ( 0.227 mol . 0.082) = T
T° = 322 K
We convert T° from K to °C → 322 K - 273 = 49°C
Answer:
The number of electrons in a neutral atom is equal to the number of protons. The mass number of the atom (M) is equal to the sum of the number of protons and neutrons in the nucleus.
sorry if im wrong
Explanation: