Volume perhaps ?
Hope this helps !
Answer:
.0924 moles of NaCl
Explanation:
So you know you have 5.4 g of NaCl and you need to know how many moles there are in this amount of NaCl
- You'll need to find the atomic mass of the compound NaCl to help you solve for moles
- Sodium (Na) on the periodic table has a mass of 22.99
- Chlorine (Cl) on the periodic table has a mass of 35.45
Add these two together----> 22.99 + 35.45 = 58.44
Now you can calculate for moles
<u>Written-out method:</u>
<u>5.4 grams of NaCl | 1 mole of NaCl </u>
| 58.44 grams NaCl = .0924 moles of NaCl
<u>Plug into calculator method:</u>
(5.4 g of NaCl/ 58.44g NaCl= .0925 moles)
Answer:
394.99g
Explanation:
The number of moles of a substance can be calculated by dividing the number of atoms of such substance by Avagadro's number (6.02 × 10^23)
n = nA ÷ 6.02 × 10^23
The number of atoms of Fp3BZ2 in this question is 2.45E24 formula units i.e. 2.45 × 10^24
n = 2.45 × 10^24 ÷ 6.02 × 10^23
n = 2.45/6.02 × 10^(24-23)
n = 0.407 × 10¹
n = 4.07moles
Using mole = mass/molar mass
Where; molar mass of Fp3Bz2. is 97.05
g/mol.
mass = molar mass × mole
mass = 97.05 × 4.07
mass = 394.99g
Explanation:
The speed of molecules increases when temperature is increased as it will result in more number of collisions between the molecules. Thus, there will be increase in kinetic energy of molecules and increase in the speed of solvent molecules.
Whereas on decreasing the temperature, the kinetic energy of molecules will decrease. This will result in less number of collisions between the molecules. Therefore, the speed of solvent molecules will slow down.