Answer:
6x-7
Step-by-step explanation:
Answer: The dimensions are: " 1.5 mi. × ³⁄₁₀ mi. " .
_______________________________________________
{ length = 1.5 mi. ; width = ³⁄₁₀ mi. } .
________________________________________________
Explanation:
___________________________________________
Area of a rectangle:
A = L * w ;
in which: A = Area = (9/20) mi.² ,
L = Length = ?
w = width = (1/5)*L = (L/5) = ?
________________________________________
A = L * w ; we want to find the dimensions; that is, the values for
"Length (L)" and "width (w)" ;
_______________________________________
Plug in our given values:
_______________________________________
(9/20) mi.² = L * (L/5) ; in which: "w = L/5" ;
→ (9/20) = (L/1) * (L/5) = (L*L)/(1*5) = L² / 5 ;
↔ L² / 5 = 9/20 ;
→ (L² * ? / 5 * ?) = 9/20 ?
→ 20÷5 = 4 ; so; L² *4 = 9 ;
↔ 4 L² = 9 ;
→ Divide EACH side of the equation by "4" ;
→ (4 L²) / 4 = 9/4 ;
______________________________________
to get: → L² = 9/4 ;
Take the POSITIVE square root of each side of the equation; to isolate "L" on one side of the equation; and to solve for "L" ;
___________________________________________
→ ⁺√(L²) = ⁺√(9/4) ;
→ L = (√9) / (√4) ;
→ L = 3/2 ;
→ w = L/5 = (3/2) ÷ 5 = 3/2 ÷ (5/1) = (3/2) * (1/5) = (3*1)/(2*5) = 3/10;
________________________________________________________
Let us check our answers:
_______________________________________
(3/2 mi.) * (3/10 mi.) =? (9/20) mi.² ??
→ (3/2)mi. * (3/10)mi. = (3*3)/(2*10) mi.² = 9/20 mi.² ! Yes!
______________________________________________________
So the dimensions are:
Length = (3/2) mi. ; write as: 1.5 mi.
width = ³⁄₁₀ mi.
___________________________________________________
or; write as: " 1.5 mi. × ³⁄₁₀ mi. " .
___________________________________________________
The correct representations of the given inequality are
–6x + 15 < 10 – 5x
and
A number line with an <u>open circle</u> at 5 and a bold line that starts at 5 and is <u>pointing to the right</u>. The correct options are the third and fourth options
<h3>Solving inequality</h3>
From the question, we are to solve the inequality
The given inequality is
–3(2x – 5) < 5(2 – x)
First, clear the brackets
–6x + 15 < 10 – 5x
NOTE: This is one of the correct representations of the inequality
Collect like terms
-6x + 5x < 10 - 15
-x < -5
Divide both sides by -1 and flip the sign
x > 5
Representing this on a number line, we get a number line with an <u>open circle</u> at 5 and a bold line that starts at 5 and is pointing to the right.
Hence, the correct representations of the given inequality are
–6x + 15 < 10 – 5x
and
A number line with an <u>open circle</u> at 5 and a bold line that starts at 5 and is <u>pointing to the right</u>. The correct options are the third and fourth options
Learn more on Inequalities here: brainly.com/question/246993
#SPJ1
Answer:
I think the answer is option 3