Answer:
T = 2.4 + 2.4 = 4.8 [s]
Explanation:
In order to solve this problem, we must use the following kinematics equation and calculate the acceleration value.

Vo = inital velocity = 0
x - xo = 15 [m]
t = time = 2.4 [s]
15 = 0.5*a*(2.4)^2
a = 5.208 [m/s^2]
We can use the same equation to find the time.
30 = 15 + 0.5*(5.208)*t^2
t = 2.4 [s]
T = 2.4 + 2.4 = 4.8 [s]
Answer:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops, then <u>the specific heats of both objects will be equal.</u>
Explanation:
If the temperature of the colder object rises by the same amount as the temperature of the hotter object drops when the two<u> objects of same mass</u> are brought into contact, then their specific heat capacity is equal.
<u>We can prove this by the equation of heat for the two bodies:</u>
<em>According to given condition,</em>


<em>when there is no heat loss from the system of two bodies then </em>


- Thermal conductivity is ultimately affects the rate of heat transfer, however the bodies will attain their final temperature based upon their mass and their specific heat capacities.
The temperature of the colder object will rise twice as much as the temperature of the hotter object only in two cases:
- when the specific heat of the colder object is half the specific heat of the hotter object while mass is equal for both.
OR
- the mass of colder object is half the mass of the hotter object while their specific heat is same.
The lower the frequency the lower the pitch sound.
Answer:
The initial velocity is 50 m/s.
(C) is correct option.
Explanation:
Given that,
Time = 10 sec
For first half,
We need to calculate the height
Using equation of motion

....(I)
For second half,
We need to calculate the time
Using equation of motion



Put the value of h from equation (I)


According to question,


Put the value of t₁ and t₂



Here, g = 10
The initial velocity is


Hence, The initial velocity is 50 m/s.