You can test if it’s true by holding a pencil in mid air over a table and the table is supposed to be the unbalanced forced that stopped the pencil from moving at the constant velocity it was going by.
The nucleons(protons and neutrons) are held together by means of this strong force. If this strong never existed, all the nucleus will blow themselves due to strong repulsive force between protons(neutron has no charge).
Thats it!
If I explain beyond, it will surely bounce off your head. Anyways, if you wanna know more bout it, ping me. (:
Answer:
W= F × d
W= 2kn × 3.6
W= 7.2 J
Work is measured in Joules!
Refer to the diagram shown below.
The hoist is in static equilibrium supported by tensions in the two ropes.
For horizontal force balance, obtain
T₃ cos 50 = T₂ cos 38
0.6428T₃ = 0.788T₂
T₃ = 1.2259T₂ (1)
For vertical force balance, obtain
T₂ sin 38 + T₃ sin 50 = 350
0.6157T₂ + 0.766T₃ = 350 (2)
Substitute (1) into (2).
0.6157T₂ + 0.766(1.2259T₂) = 350
1.5547T₂ = 350
T₂ = 225.124 N
T₃ = 1.2259(225.124) = 275.979
Answer:
T₂ = 225.12 N
T₃ = 275.98 N
Answer: Tension = 47.8N, Δx = 11.5×
m.
Tension = 95.6N, Δx = 15.4×
m
Explanation: A speed of wave on a string under a tension force can be calculated as:

is tension force (N)
μ is linear density (kg/m)
Determining velocity:


0.0935 m/s
The displacement a pulse traveled in 1.23ms:


Δx = 11.5×
With tension of 47.8N, a pulse will travel Δx = 11.5×
m.
Doubling Tension:



|v| = 0.1252 m/s
Displacement for same time:


15.4×
With doubled tension, it travels
15.4×
m