<span>At first when the car is at the datum
point where is no elevation, the kinetic energy increases while the potential
energy is zero. As it travel the path and goes upward the kinetic enrgy
decreases while the potential energy increases. When it goes down again the
kinetic enrgy increases again while the potential energy decreases </span>
"<span>increases when pressure decreases". Pressure and volume of gasses are related from Boyle's law, which states that Pressure is proportional to 1/V, so as pressure decreases, volume increases. </span>
Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
Answer:
a)
b) 
Explanation:
a) The displacement of the first object is 22.5 m, so we can use the next equation:



positive acceleration.
b) Using the same equation we can find the second value of the acceleration:


positive acceleration.
I hope it helps you!
To solve this problem it is necessary to apply the concepts related to acceleration due to gravity, as well as Newton's second law that describes the weight based on its mass and the acceleration of the celestial body on which it depends.
In other words the acceleration can be described as

Where
G = Gravitational Universal Constant
M = Mass of Earth
r = Radius of Earth
This equation can be differentiated with respect to the radius of change, that is


At the same time since Newton's second law we know that:

Where,
m = mass
a =Acceleration
From the previous value given for acceleration we have to

Finally to find the change in weight it is necessary to differentiate the Force with respect to the acceleration, then:




But we know that the total weight (F_W) is equivalent to 600N, and that the change during each mile in kilometers is 1.6km or 1600m therefore:


Therefore there is a weight loss of 0.3N every kilometer.