1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
velikii [3]
3 years ago
15

Air enters a 16-cm-diameter pipe steadily at 200 kPa and 20°C with a velocity of 5 m/s. Air is heated as it flows, and it leaves

the pipe at 180 kPa and 43°C. The gas constant of air is 0.287 kPa·m3/kg·K. Whats the volumetric flow rate of the inlet/outlet, mass flow rate and velocity & volume flow rate at the exit?
Physics
1 answer:
igor_vitrenko [27]3 years ago
4 0

Explanation:

(a)  We will determine the mass flow rate as follows.

                m = \rho_{1} V_{1}

                    = \frac{P_{1}}{RT_{1}}A_{1}v_{1}

                    = \frac{P_{1}}{RT_{1}} \times \frac{D^{2}}{4} \pi v_{1}

Putting the given values into the above formula as follows.

      m = \frac{P_{1}}{RT_{1}} \times \frac{D^{2}}{4} \pi v_{1}

          = \frac{200}{0.287 \times 293 K} \times \frac{(0.16)^{2}}{4} \pi \times 5                          

          = 0.239 kg/s

Hence, the mass flow rate of the inlet/outlet is 0.239 kg/s.

(b)  Now, we will determine the final volume rate as follows.

            V_{2} = \frac{m}{\rho_{2}}

                        = \frac{RT_{2}m}{P_{2}}

                        = \frac{0.287 \times 313 \times 0.239}{180}

                        = 0.119 m^{3}/s

And, the final velocity will be determined as follows.

               v_{2} = \frac{V_{2}}{A}

                         = \frac{4V_{2}}{D^{2} \times \pi}

                         = \frac{4 \times 0.119}{(0.16)^{2} \times \pi}

                         = 5.92 m/s

Therefore, the volumetric flow rate is 0.119 m^{3}/s and velocity rate is 5.92 m/s.

You might be interested in
You are in a car and go around a corner very fast. What happens to you?
Fiesta28 [93]

Answer:

You may tip the car over or crash.

Explanation:

Going really fast at high speeds and turn a corner might make the car crash into an object or fall over.

3 0
3 years ago
A 12.0 g bullet was fired horizontally into a 1 kg block of wood. The bullet initially had a speed of 250 m/s. The block of wood
LuckyWell [14K]

Answer:

The rise in height of combined block/bullet from its original position is 0.45m

Explanation:

Given;

mass of bullet, m₁ = 12 g = 0.012 kg

mass of block of wood, m₂ = 1 kg

initial speed of bullet, u₁ = 250 m/s.

initial speed of block of wood, u₂ = 0

From the principle of conservation of linear momentum, calculate the final speed of the combined block/bullet system.

m₁u₁ + m₂u₂ = v(m₁+m₂)

where;

v is the final speed of the combined block/bullet system.

0.012 x 250 + 0 = v (0.012 + 1)

3 = v (1.012)

v = 3/1.012

v = 2.96 m/s

From the principle of conservation of energy, calculate the rise in height of the block/bullet combined from its original position.

¹/₂mv² = mgh

¹/₂v² = gh

¹/₂ (2.96)² = (9.8)h

4.3808 = 9.8h

h = 4.3808/9.8

h = 0.45 m

Therefore, the rise in height of combined block/bullet from its original position is 0.45m

7 0
3 years ago
Read 2 more answers
How should the distance, D, between two point charges, q1 and q2, be changed to double their electric potential energy
Licemer1 [7]

The electrostatic potential energy, U, of one point charge q at position d in the presence of an electric field E is defined as the negative of the work W done by the electrostatic force to bring it from the reference position d to that position

u \:  =  \:  \frac{kq1q2}{d}

Thus, to double the electric potential energy U we need to reduce the distance of separation by half (1/2) because they are inversely proportion

6 0
4 years ago
Rock at the top of a 20 m tall hill the rock has a mass of 10 kg how much potential energy does it have
Blizzard [7]
PE = 10 * 10 * 20 = 2000 Joule
6 0
3 years ago
Read 2 more answers
Usain Bolt's world-record 100 m sprint on August 16, 2009, has been analyzed in detail. At the start of the race, the 94.0 kg Bo
ZanzabumX [31]

a) 893 N

b) 8.5 m/s

c) 3816 W

d) 69780 J

e) 8030 W

Explanation:

a)

The net force acting on Bolt during the acceleration phase can be written using Newton's second law of motion:

F_{net}=ma

where

m is Bolt's mass

a is the acceleration

In the first 0.890 s of motion, we have

m = 94.0 kg (Bolt's mass)

a=9.50 m/s^2 (acceleration)

So, the net force is

F_{net}=(94.0)(9.50)=893 N

And according to Newton's third law of motion, this force is equivalent to the force exerted by Bolt on the ground (because they form an action-reaction pair).

b)

Since Bolt's motion is a uniformly accelerated motion, we can find his final speed by using the following suvat equation:

v=u+at

where

v is the  final speed

u is the initial speed

a is the acceleration

t is the time

In the first phase of Bolt's race we have:

u = 0 m/s (he starts from rest)

a=9.50 m/s^2 (acceleration)

t = 0.890 s (duration of the first phase)

Solving for v,

v=0+(9.50)(0.890)=8.5 m/s

c)

First of all, we can calculate the work done by Bolt to accelerate to a speed of

v = 8.5 m/s

According to the work-energy theorem, the work done is equal to the change in kinetic energy, so

W=K_f - K_i = \frac{1}{2}mv^2-0

where

m = 94.0 kg is Bolt's mass

v = 8.5 m/s is Bolt's final speed after the first phase

K_i = 0 J is the initial kinetic energy

So the work done is

W=\frac{1}{2}(94.0)(8.5)^2=3396 J

The power expended is given by

P=\frac{W}{t}

where

t = 0.890 s is the time elapsed

Substituting,

P=\frac{3396}{0.890}=3816 W

d)

First of all, we need to find what is the average force exerted by Bolt during the remaining 8.69 s of motion.

In the first 0.890 s, the force exerted was

F_1=893 N

We know that the average force for the whole race is

F_{avg}=820 N

Which can be rewritten as

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}

And solving for F_2, we find the average force exerted by Bolt on the ground during the second phase:

F_{avg}=\frac{0.890 F_1 + 8.69 F_2}{0.890+8.69}\\F_2=\frac{(0.890+8.69)F_{avg}-0.890F_1}{8.69}=812.5 N

The net force exerted by Bolt during the second phase can be written as

F_{net}=F_2-D (1)

where D is the air drag.

The net force can also be rewritten as

F_{net}=ma

where

a=\frac{v-u}{t} is the acceleration in the second phase, with

u = 8.5 m/s is the initial speed

v = 12.4 m/s is the final speed

t = 8.69 t is the time elapsed

Substituting,

a=\frac{12.4-8.5}{8.69}=0.45 m/s^2

So we can now find the average drag force from (1):

D=F_2-F_{net}=F_2-ma=812.5 - (94.0)(0.45)=770.2 N

So the increase in Bolt's internal energy is just equal to the work done by the drag force, so:

\Delta E=W=Ds

where

d is Bolt's displacement in the second part, which can be found by using suvat equation:

s=\frac{v^2-u^2}{2a}=\frac{12.4^2-8.5^2}{2(0.45)}=90.6 m

And so,

\Delta E=Ds=(770.2)(90.6)=69780 J

e)

The power that Bolt must expend just to voercome the drag force is given by

P=\frac{\Delta E}{t}

where

\Delta E is the increase in internal energy due to the air drag

t is the time elapsed

Here we have:

\Delta E=69780 J

t = 8.69 s is the time elapsed

Substituting,

P=\frac{69780}{8.69}=8030 W

And we see that it is about twice larger than the power calculated in part c.

3 0
3 years ago
Other questions:
  • I Need help please with this question..
    15·1 answer
  • A scientist prepares a colloidal solution and pours it into a glass tank. She then flashes a beam of white light into one end of
    7·2 answers
  • What is the displacement of a car with an acceleration of 4.00 m/s2 as it increases.
    11·1 answer
  • Explain the limitations of electrical energy production created exclusively by renewable energy sources.
    7·1 answer
  • Which is bigger, a kilometer or a mile?
    7·2 answers
  • estimate the number of breaths taken by a human being during an average lifetime. (we estimate an average respiration rate of ab
    8·1 answer
  • All objects are either ___________ or ___________. Charged objects can have a ____________ or _____________ charge. Uncharged ob
    5·1 answer
  • Do you know what NBA basketball player is this. And what is he doing to stay healthy.
    12·1 answer
  • b) With the aid of diagrams, briefly describe an experiment to determine the density of an irregular shaped object (eg. stone).​
    10·1 answer
  • Thinking about planck's law, which star would give off the most orange light?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!