Answer: a) for 150 Angstroms 6.63 *10^-3 eV; b) for 5 Angstroms 6.02 eV
Explanation: To solve this problem we have to use the relationship given by De Broglie as:
λ =p/h where p is the momentum and h the Planck constant
if we consider the energy given by acceleration tube for the electrons given by: E: e ΔV so is equal to kinetic energy of electrons p^2/2m
Finally we have:
eΔV=p^2/2m= h^2/(2*m*λ^2)
replacing we obtained the above values.
I believe it’s B. Electrons
The distance travel is 69.5 meters.
<u>Explanation:</u>
Given datas are as follows
Speed = 27.8 meters / second
Time = 2.5 seconds
The formula to calculate the speed using distance and time is
Speed = Distance ÷ Time (units)
Then Distance = Speed × Time (units)
Distance = (27.8 × 2.5) meters
Distance = 69.50 meters
Therefore the distance travelled is 69.50 meters.
The cell cycle has two main phases, interphase and mitosis. Mitosis is the process during which one cell divides into two. Interphase is the time during which preparations for mitosis are made. Interphase itself is made up of three phases -- G1 phase, S phase, and G2 phase -- along with a special phase called G0.
Answer:
The voltage (V)
Explanation:
Ohms, in his law, has explained the relationship between current, resistance and voltage.
Ohm's law, which states that the voltage passing through a resistor is directly proportional to both the current and the resistance of the resistor, has the following equation:
V = IR
Where;
V = voltage (volts)
I = current (Amperes)
R = resistance (ohms)
According to this question, Karl measures the current, I, through a resistor. In order to calculate his resistance, R, he will need to measure the voltage, V.