For this one, all you really need to do is eliminate any answers
that are absurd or meaningless.
You can't increase a transformer.
You can't increase a circuit.
You can't increase a generator.
When the <em><u>current</u></em> through a coil of wire increases, the magnetic field
around the coil increases, so there would be more magnetic force
between the coil and a permanent magnet.
Newton’s 2nd law states that Force is equal to
the product of mass (m) and acceleration (a):
F = m a --->
1
While in magnetic forces, force can also be expressed as:
F = q v B --->
2
where,
q = total charge
v = velocity = 45 cm / s = 0.45 m / s
B = the magnetic field = 85 T
First we solve for the total charge, q:
q = 3.8 × 10^-23 g (1 mol / 23 g) (6.022 × 10^23 electrons / mol) (1.602 ×
10^-19 C / electron)
q = 1.594 × 10^-19 C
We equate equations 1 and 2 then solve for acceleration a:
m a = q v B
a = q v B / m
a = [1.594 × 10^-19 C * 0.45 m / s * 85 T] / 3.8 × 10-26 kg
a = 160,437,862.2 m/s^2
Therefore the maximum acceleration of Na ions is about 160 × 10^6 m/s^2.
Answer:
Hire, organize, and supply workers.
Explanation:
Answer:
D. the ability to exercise for longer periods of time
Explanation:
For example, when someone does endurance training, they are stretching their body's ability to do a certain exercise for longer times as opposed to increasing strength.
Batteries supply electrons to the circuit by releasing negatively charged atoms or ions. These ions are produced by the batteries through a chemical reaction that spontaneously occurs within the battery. So the negative end of the battery pushes the ions towards the positive end of the circuit with the help of the voltage. This is why eventually, batteries "run out" when the electrode is used up and the chemical reaction can no longer continue.