The distance between slit and the screen is 1.214m.
To find the answer, we have to know about the width of the central maximum.
<h3>How to find the distance between slit and the screen?</h3>
- It is given that, wavelength 560 nm passes through a slit of width 0. 170 mm, and the width of the central maximum on a screen is 8. 00 mm.
- We have the expression for slit width w as,

where, d is the distance between slit and the screen, and a is the slit width.
- Thus, distance between slit and the screen is,

Thus, we can conclude that, the distance between slit and the screen is 1.214m.
Learn more about the width of the central maximum here:
brainly.com/question/13088191
#SPJ4
Answer:
The direction of the B-field is in the +y-direction.
Explanation:
The corresponding formula is

This means, we should use right-hand rule.
Our index finger is pointed towards +x-direction (direction of velocity),
our middle finger should point towards the direction of the B-field,
and our thumb should point towards the +z-direction (direction of the force).
Since our middle finger in this situation points towards +y-direction, the B-field should be in +y-direction.

Answer:
310 meters
Explanation:
Given:
v₀ = 0 m/s
t = 8.0 s
a = -9.8 m/s²
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (8.0 s) + ½ (-9.8 m/s²) (8.0 s)²
Δy = -313.6
Rounded to two significant figures, the object fell 310 meters.
Answer: hope it helps you...❤❤❤❤
Explanation: If your values have dimensions like time, length, temperature, etc, then if the dimensions are not the same then the values are not the same. So a “dimensionally wrong equation” is always false and cannot represent a correct physical relation.
No, not necessarily.
For instance, Newton’s 2nd law is F=p˙ , or the sum of the applied forces on a body is equal to its time rate of change of its momentum. This is dimensionally correct, and a correct physical relation. It’s fine.
But take a look at this (incorrect) equation for the force of gravity:
F=−G(m+M)Mm√|r|3r
It has all the nice properties you’d expect: It’s dimensionally correct (assuming the standard traditional value for G ), it’s attractive, it’s symmetric in the masses, it’s inverse-square, etc. But it doesn’t correspond to a real, physical force.
It’s a counter-example to the claim that a dimensionally correct equation is necessarily a correct physical relation.
A simpler counter example is 1=2 . It is stating the equality of two dimensionless numbers. It is trivially dimensionally correct. But it is false.
a quqntity that doea not indict a direction