212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
Option A.
Explanation:
Similar to Avagadro's law, there is another law termed as dilution law. As the product of volume and normality of the reactant is equal to the product of volume and normality of the product from the Avagadro's law. In dilution law, it will be as product of volume and concentration of the solute of the reactant is equal to the product of volume and concentration of solution.

So, as per the given question C1 = 5.45 M of lead nitrate and V1 has to be found. While C2 is 1.41 M of lead nitrate and V2 is 820.7 ml.
Then, 

So nearly 212 ml of lead nitrate is required to prepare a dilute solution of 820.7 ml of lead nitrate.
Answer:
7.03 g
Explanation:
Step 1: Write the balanced synthesis reaction
N₂(g) + 3 H₂(g) ⇒ 2 NH₃(g)
Step 2: Calculate the moles corresponding to 32.5 g of N₂
The molar mass of N₂ is 28.01 g/mol.
32.5 g × 1 mol/28.01 g = 1.16 mol
Step 3: Calculate the number of moles of H₂ needed to react with 1.16 moles of N₂
The molar ratio of N₂ to H₂ is 1:3. The moles of H₂ needed are 3/1 × 1.16 mol = 3.48 mol.
Step 4: Calculate the mass corresponding to 3.48 moles of H₂
The molar mass of H₂ is 2.02 g/mol.
3.48 mol × 2.02 g/mol = 7.03 g
Answer:
The correct option is: provide a source of counterions to prevent the build-up of charge at both the cathode to the anode.
Explanation:
A salt bridge is a U-shaped glass tube that is used in a voltaic cell or galvanic cell to connect the oxidation and reduction half-cells and complete the electric circuit.
<em>It allows the ions to pass through it, thus preventing the accumulation of charge on the anode and cathode as the chemical reaction proceeds.</em>
<u />
Therefore, the correct option is: <u>provide a source of counterions to prevent the build-up of charge at both the cathode to the anode.</u>
Options are as follow,
A) <span>Constant volume, no intermolecular forces of attraction,energy loss in collisions
B) </span><span>No volume, strong intermolecular forces of attraction, perfectly elastic collisions
C) </span><span>Constant volume, no intermolecular forces of attraction, energy gain during collisions
D) </span><span>No volume, no intermolecular forces of attraction, perfectly elastic collisions
Answer:
Option-D (</span>No volume, no intermolecular forces of attraction, perfectly elastic collisions) is the correct answer.
Explanation:
As we know there are no interactions between gas molecules due to which they lack shape and volume and occupies the shape and volume of container in which they are kept. So, we can skip Option-B.
Secondly we also know that the gas molecules move randomly. They collide with the walls of container causing pressure and collide with each other. And these collisions are perfectly elastic and no energy is lost or gained during collisions. Therefore Option-A and C are skipped.
Now we are left with only Option-D, In option D it is given that ideal gas has no volume. This is true related to Ideal gas as it is stated in ideal gas theories that molecules are far apart from each other and the actual volume of gas molecules compared to volume of container is negligible. Hence, for ideal gas Option-D is a correct answer.