Answer:
2.7 moles of Fe₂O₃ is the maximum amount that can be produced. Iron is the limiting reactant.
Explanation:
The balanced reaction is:
4 Fe + 3 O₂ → 2 Fe₂O₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Fe: 4 moles
- O₂: 3 moles
- Fe₂O3: 2 moles
The limiting reagent is one that is consumed first in its entirety, determining the amount of product in the reaction. When the limiting reagent is finished, the chemical reaction will stop.
You can use a simple rule of three as follows: if by stoichiometry 4 moles of Fe reacts with 3 moles of O₂, how much moles of Fe will be needed if 4.7 moles of O₂ react?

moles of O₂= 6.27
But 6.27 moles of Fe are not available, 5.4 moles are available. Since you have less moles than you need to react with 4.7 moles of O₂, iron Fe will be the limiting reagent.
So you can use a simple rule of three as follows: if by stoichiometry 4 moles of Fe produce 2 moles of Fe₂O₃, how many moles of Fe₂O₃ will be produced if 5.4 moles of Fe react?

moles of Fe₂O₃= 2.7 moles
Then:
<u><em>2.7 moles of Fe₂O₃ is the maximum amount that can be produced. Iron is the limiting reactant.</em></u>
N₂ + 3H₂ ⇄ 2NH₃ + heat
In the given equilibrium, we notice that the heat is on the right. which means that if the heat requirements don't meet, the reactants on the right will no longer react due to the lack of heat
but because the reactants on the left don't have such weaknesses, they will keep reacting hence producing more and more ammonia until a new equilibrium is reached
where there will be more ammonia and less nitrogen and hydrogen as compared to the equilibrium we had initially
Answer:
Kindly check the explanation section.
Explanation:
From the description given in the question above, that is '' H subscript f to the power of degree of the reaction" we have that the description matches what is known as the heat of formation of the reaction, ∆fH° where the 'f' is a subscript.
In order to determine the heat of formation of any of the species in the reaction, the heat of formation of the other species must be known and the value for the heat of reaction, ∆H(rxn) must also be known. Thus, heat of formation can be calculated by using the formula below;
∆H(rxn) = ∆fH°( products) - ∆fH°(reactants).
That is the heat of formation of products minus the heat of formation of the reaction g specie(s).
Say heat of formation for the species is known as N(g) = 472.435kj/mol, O(g) = 0kj/mol and NO = unknown, ∆H°(rxn) = −382.185 kj/mol.
−382.185 = x - 472.435kj/mol = 90.25 kJ/mol