Using the equation

we can observe that you have to apply a non-zero net force to an object in order to make it accelerate. In fact, if the net force is zero you have

Since we're assuming 
Now, if the 12N force is applied, the object moves with a constant speed. A constant speed means no acceleration, since by definition the acceleration is a change in speed.
If this sounds counterintuitive to you (why I'm applying a force but I have to acceleration?) think of when we drive a car: even if you want to keep your speed constant, you still have to use the gas pedal, just enough so that the push of the motor balances exactly the road/wheels friction. If you give less gas, the friction becomes stronger, and the car slows down. If you give more gas, the motor push becomes stronger, and the car accelerates.
Back to your exercise: constant speed means to acceleration, so the net force must be zero. This implies that the friction force is exactly 12N.
If the force is increased to 18N, there will be a net force of 6N pushing the object, causing it to accelerate. Using again the same equation of before, and plugging the 3kg mass in the equation, we have

So, the object moves with constant acceleration and initial speed of 10m/s for 0.2 seconds. It's final speed will be

The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
The final velocity of the two pucks is -5 m/s
Explanation:
We can solve the problem by using the law of conservation of momentum.
In fact, in absence of external force, the total momentum of the two pucks before and after the collision must be conserved - so we can write:

where
is the mass of each puck
is the initial velocity of the 1st puck
is the initial velocity of the 2nd puck
v is the final velocity of the two pucks sticking together
Re-arranging the equation and solving for v, we find:

Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Discrete systems are those systems in which are made up of finite component particles a which are non-homogeneously arranged such that no smooth variation exists. It is such that all constituent particles have properties which vary randomly. They are direct opposite to continuous systems, which are smooth arrangement of particles which cannot be individually taken into consideration.
Was this answer helpful