Answer:
3.42N
Explanation:
*not too sure bc i left my physics notes at school so it might not be 100% accurate :p*
Use the equation: F = (GMm)/(r^2)
F = force of gravity
G = gravitational constant (6.7x10^-11)
M = mass1 (2.5x10^30kg)
m = mass2 (1kg)
r = radius (7000m)
Plug it in: F = ((6.7x10^-11)(2.5x10^30)(1)) / (7000^2)
F = (1.675x10^20) / (4.9x10^7)
F = 3.4183673x10^12
F = 3.42N
Answer:
I'd say C is the answer they want, though my pedantic side wants to argue for B being true as well.
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
Answer:
KE = 0.5 * m * v², where: m - mass, v - velocity.
Explanation:
In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. For example, if a an object with a mass of 10 kg (m = 10 kg) is moving at a velocity of 5 meters per second (v = 5 m/s), the kinetic energy is equal to 125 Joules, or (1/2 * 10 kg) * 5 m/s 2.