Answer:
0.0319 m³
Explanation:
Use ideal gas law:
PV = nRT
where P is pressure, V is volume, n is amount of gas, R is the gas constant, and T is temperature.
Since P, n, and R are held constant:
n₁ R / P₁ = n₂ R₂ / P₂
Which means:
V₁ / T₁ = V₂ / T₂
Plugging in:
0.0279 m³ / 280 K = V / 320 K
V = 0.0319 m³
It's number three on your worksheet. ;)
Answer:
Wave speed = Wavelength x Frequency
26 m/s = Wavelength x 49
Divide by 49 to find the wavelength:
The wavelength is approximately 0.53
Let me know if this helps!
Answer:
The second projectile was 1.41 times faster than the first.
Explanation:
In the ballistic pendulum experiment, the speed (v) of the projectile is given by:
<em>where m: is the mass of the projectile, M: is the mass of the pendulum, g: is the gravitational constant and h: is the maximum height of the pendulum. </em>
To know how many times faster was the second projectile than the first, we need to take the ratio for the velocities for the projectiles 2 and 1:
(1)
<em>where m₁ and m₂ are the masses of the projectiles 1 and 2, respectively, and h₁ and h₂ are the maximum height reached by the pendulum by the projectiles 1 and 2, respectively. </em>
Since the projectile 1 has the same mass that the projectile 2, we can simplify equation (1):

Therefore, the second projectile was 1.41 times faster than the first.
I hope it helps you!
Answer: atmospheric is air by the earth and pressure is just someone or something doing it
Explanation: