The electron configuration that belongs to the atom with the lowest first ionization energy is francium.
<h3>What is ionization energy? </h3>
Ionization energy is defined as the minimum amount of energy required to remove the most loosely electron present in outermost shell.
<h3>Ionization energy across period</h3>
Ionization energy increase as we move from left to right in the period. This can be explained as when we move from left to right along period new electron is added to the same shell which increase the nuclear charge. Hence results int he decrease in size. Due to this decrease in size more energy is required to remove electron from outermost shell.
<h3>Ionization energy along group</h3>
Ionization energy decrease as we move from top to bottom along group. This can be explained as we move from top to bottom new electron is added to new shell. Due to addition of new shell the size of atom increases which results in the decrease in the nuclear charge. Due to this less amount of energy is needed to remove an electron.
Thus, we concluded that the electron configuration that belongs to the atom with the lowest first ionization energy is francium.
learn more about ionization energy:
brainly.com/question/1602374
#SPJ4
C3H8+3O2--->3CO2+8H
Therefore for every 1:3 there are 3 Carbon dioxides that form. That means find the limiting reactant from the two reactants.
5.5g(1mole C3H8/44.03g of C3H8)=0.1249 moled of C3H8 and if for every one C3H8 we can form three CO2. We can assume 0.3747 miles of CO2 will be produced.
15g of O2(1 mole O2/32g of O2)=0.4685moles O2 and if for every three O2 we can produce three CO2 we may assume a 1:1 ratio.
This means C3H8 will be your limiting reactant. Therefore 0.3747 moles of CO2 will be produced.
0.3747 moles of CO2(48.01 g of CO2/1 mole of CO2)= 17.99 grams of CO2
Substances have more kinetic energy in the gas state than in the solid state
Answer:
Weak acid and base solutions contain multiple charged and uncharged species in dynamic equilibrium. Strong acids and strong bases refer to species that completely dissociate to form ions in solution.
Explanation:
Answer:
You need to add 19,5 mmol of acetates
Explanation:
Using the Henderson-Hasselbalch equation:
pH = pKa + log₁₀ [base]/[acid]
For the buffer of acetates:
pH = pKa + log₁₀ [CH₃COO⁻]/[CH₃COOH]
As pH you want is 5,03, pka is 4,74 and milimoles of acetic acid are 10:
5,03 = 4,74 + log₁₀ [CH₃COO⁻]/[10]
1,95 = [CH₃COO⁻]/[10]
<em>[CH₃COO⁻] = 19,5 milimoles</em>
Thus, to produce an acetate buffer of 5,03 having 10 mmol of acetic acid, you need to add 19,5 mmol of acetates.
I hope it helps!