The Relative Formula Mass of NaH2PO4 is 120 g/mol
Therefore, the number of moles = 6.6/120
= 0.055 moles of NaH2PO4 which is also equal to the number of moles of H2PO4.
[H2PO4-] = Number of moles oof H2PO4-/Volume of the solution in L
= 0.055/ ( 355 ×10^-3)
= 0.155 M
Na2HPO4 undergoes complete dissociation as follows;
Na2HPO4 (aq)= 2Na+ (aq) + HPO4^2- (aq)
1 mole of Na2HPO4 = 142 g/mol
Therefore; number of moles = 8.0/142
= 0.0563 moles
[HPO4 ^-2] is given by no of moles HPO4^2- /volume of the solution in L
= 0.0563/(355×10^-3)
= 0.1586 M
Both H2PO4^2- and HPO4^2- are weak acids the undergoes partial dissociation
Ka of H2PO4- = 6.20 × 10^-8
[H+] =Ka*([H2PO4-]/[HPO4(2-)]
= (6.20 ×10^-8)×(0.155/0.1586)
= 6.059 ×10^-8 M
pH = - log[H+]
= - log (6.059×10^-8)
= 7.218
The "Van Gogh" one is subjective, because it expresses opinion and is not a true, hard fact. :)
Hey there!
The elements in this equation are K, N, O, H, and C.
Let's count how many of each are on each side to see if it is balanced.
K: 2 on the left, 2 on the right.
<em>N: 2 on the left, 4 on the right. </em>
<em>O: 9 on the left, 6 on the right. </em>
<em>H: 2 on the left, 4 on the right. </em>
C: 1 on the left, 1 on the right.
Notice that there are different amounts of N, O, and H on the left side and the right side.
This means that the equation is not balanced.
Hope this helps!
The valence electrons are the parts of an atom that make interactions and make chemical bonds.
Every atom is made of three different components, a positively charged proton, neutrally charged neutron and negatively charged electron. The protons and the neutrons make up the atom's core and the electrons orbit around that core.
The electrons that orbit around the atom's core in its outer-most orbit (the one that is the furthest from the atom's core) can interact with electrons of other atoms, forming different kinds of chemical bonds.
If there is an exchange of the electrons (one atom donates its electrons to another atom), that results in forming of ions, then those two atoms can be linked in an ionic bond.
If an electron is shared between two atoms, then that bond is called a covalent bond.
Hey there!
Values Ka1 and Ka2 :
Ka1 => 8.0*10⁻⁵
Ka2 => 1.6*10⁻¹²
H2A + H2O -------> H3O⁺ + HA⁻
Ka2 is very less so I am not considering that dissociation.
Now Ka = 8.0*10⁻⁵ = [H3O⁺] [HA⁻] / [H2A]
lets concentration of H3O⁺ = X then above equation will be
8.0*10−5 = [x] [x] / [0.28 -x
8.0*10−5 = x² / [0.28 -x ]
x² + 8.0*10⁻⁵x - 2.24 * 10⁻⁵
solve the quardratic equation
X =0.004693 M
pH = -log[H⁺]
pH = - log [ 0.004693 ]
pH = 2.3285
Hope that helps!