Answer:
0.677 moles
Explanation:
Take the atomic mass of K = 39.1, O =16.0, P = 31.0
no. of moles = mass / molar mass
no. of moles of K3PO4 used = 4.79 / (39.1x3 + 31 + 16x4)
= 0.02256 mol
From the equation, the mole ratio of KOH : K3PO4 = 3 :1,
meaning every 3 moles of KOH used, produces 1 mole of K3PO4.
So, using this ratio, let the no. of moles of KOH required to be y.

y = 0.02256 x3
y = 0.0677 mol
If you don't find exactly 0.677 moles as one of the options, go for the closest one. A very slight error may occur because of taking different significant figures of atomic masses when calculating.
Answer:
A toilet requires a large amount of cold water to flush. So, when the toilet flushes while you're in the shower, it's stealing from your shower's cold water supply. When the pressure-balancing valve senses the drop in cold water pressure, it responds by restricting the hot water pressure.
Explanation:
Some Rules Regarding Oxidation Numbers:
- Hydrogen has oxidation number of + 1 except in hydrides where it is -1
- Oxygen has oxidation number of -2 except in peroxides where it is -1
- Some elements have fixed oxidation numbers. E.g Halogen group elements has oxidation number of -1
- Oxidation number of a compound is the sum total of the individual elements and a neutral compound has oxidation number of 0.
A. HI
Hydrogen has oxidation of + 1
Oxidation number of I:
1 + x = 0
x = -1
B. PBr3
Br has oxidation number of - 1
Oxidation number of Pb:
x + 3 (-1) = 0
x = + 3
C. KH
Hydrogen has oxidation of + 1
Oxidation number of K:
1 + x = 0
x = -1
D. H3PO4
Hydrogen has oxidation number of + 1
Oxygen has oxidation number of -2
Oxidation number of P:
3(1) + x + 4(-2) = 0
3 + x - 8 =0
x = 5
First, calculate for the mass of the aqueous solution by multiplying the given volume (in mL) by the density (in g/mL). In mathematical equation, that is,
m = ρV
where m is mass, ρ is density, and V is volume. Substituting the known values,
m = (1.03 g/mL)(250 mL) = 257.5 g
To get the concentration in ppm, divide the given mass of methanol by the mass of the solution. Note that the parts-per million (ppm) is equal to mass of solute in milligram(mg) divided by the mass of solution in kilogram (kg)
C (in ppm) = (1.56 x 10^-6 g)(1000 mg/1 g) / (257.5 g)(1 kg/1000 g)
Simplifying,
C (in ppm) = (1.56 x 10^-3 mg)/ 0.2575 kg
C (in ppm) = 0.00606 ppm
<em>Answer: 0.00606 ppm</em>
1.3 kJ/kg K x 5 kg x 200C = 1300 kJ
The answer is <span>1,314,718 J</span>