Answer: 4 s
Explanation:
Given
The ball leaves the hand of student with a speed of 
When the hand is
above the ground
Using the equation of motion we can write

Substitute the values
![\Rightarrow 2.5=-19t+0.5\times 9.8t^2\\\Rightarrow 4.9t^2-19t-2.5=0\\\\\Rightarrow t=\dfrac{19\pm \sqrt{(-19)^2-4\times 4.9\times (-2.5)}}{2\times 19}\\\Rightarrow t=4.0049\quad [\text{Neglecting the negative value of }t]](https://tex.z-dn.net/?f=%5CRightarrow%202.5%3D-19t%2B0.5%5Ctimes%209.8t%5E2%5C%5C%5CRightarrow%204.9t%5E2-19t-2.5%3D0%5C%5C%5C%5C%5CRightarrow%20t%3D%5Cdfrac%7B19%5Cpm%20%5Csqrt%7B%28-19%29%5E2-4%5Ctimes%204.9%5Ctimes%20%28-2.5%29%7D%7D%7B2%5Ctimes%2019%7D%5C%5C%5CRightarrow%20t%3D4.0049%5Cquad%20%5B%5Ctext%7BNeglecting%20the%20negative%20value%20of%20%7Dt%5D)
Thus, the ball will take 4 s to hit the ground.
This is the answer to Question 5
There is no soil in a hole
;)
Answer:
<em>The new force is 2/3 of the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:

Factoring out 2/3:

Substituting the original force:

The new force is 2/3 of the original force
Think of the formula force=mass x acceleration. even though they have the same acceleration, a train has more mass. is that helpful?