The correct answer is "All of the above".
In fact, electromagnetic induction occurs when there is a change of the magnetic flux through the area enclosed by a circuit (in this case, the area enclosed by the wire loop).
The magnetic flux

through a certain surface is given by

(1)
Where B is the intensity of the magnetic field, A is the area enclosed by the circuit and

is the angle between the direction of the field B and the perpendicular to the area.
In the first situation, the magnet is getting closer to the loop, so the magnetic flux through the area enclosed by the wire is increasing (because the intensity of the magnetic field B is increasing). Situation 2) is the opposite case: the wire loop is moving away from the magnet, so the intensity of the magnetic field B is decreasing, and therefore the magnetic flux is decreasing as well.
Finally, in the third situation the wire loop is rotating. Here the distance between the loop and the magnet is not changing, but remember that the magnetic flux depends also on the angle between the direction of the magnetic field and the perpendicular (formula 1), and so since the wire loop is rotating, than this angle is changing, therefore the magnetic flux is changing as well.
The electric field at point A located 2.00 mm above the dipole's midpoint is 5.287 X 10¹³ N/C.
<h3>
Electric field of the positive particle</h3>
The electric field is calculated as follows;
E = kq/r²
where;
- r is the distance between the charges
- k is Coulomb's constant
- q is magnitude of the charge
midpoint of 3.08 m, x = 1.54 mm
r(1.54 mm, 2.00 mm)
|r| = √(1.54² + 2²)
|r| = 2.52 mm
E = (9 x 10⁹ x 37.3 x 10⁻³)/(2.52 x 10⁻³)²
E = 5.287 X 10¹³ N/C
Thus, the electric field at point A located 2.00 mm above the dipole's midpoint is 5.287 X 10¹³ N/C.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
1) 30 volts is correct
2) Rt = (4x6)/(4+6)=2.4 Ω
3) P = I^2 x R = 36 W
we use AC because it's easy to transmit via 3 phase on cables and easy to step up and down
Answer:
A force that pushes or pulls is known as Newton's third law of Motion.
Explanation:
Newton's Third Law of Motion. Newton's Third Law of Motion states that for each action, there's an equal and opposite reaction. What this suggests is that pushing on an object causes that object to keep off against you, the precise same amount, but within the other way.
Answer:
a) 1.75s b) 17.2 m/s (down)
Explanation:
d1= 15m d2= 0m (because it hits ground)
a= -9.81 m/s^2 t=???
Equation
the triangle means change in so d2-d1
Δd= v1 * t + 1/2 * a * t^2
0m-15m= v1*t + 1/2 a t^2
-15 m= 0m/s*t (goes away) + 1/2* a *t^2
-15mx2= t^2
-15mx2/a= t^2
Square root (-30/-9.81m/s^2)
t=1.75 s
b) now v2!!
Im going to use v2= v1 + a*t
v2= 0m/s + -9.81 x 1.75s
v2 = -17.2 m/s or you can say 17.2 m/s down!!!