Answer:
534.9 N
Explanation:
The skier weight is his mass times gravitational acceleration g
W = mg = 103 * 9.8 = 1009.4 N
This weight can be divided into 2 components, one perpendicular and the other parallel to the 32-degree slope. The parallel component would equal to
Answer:
Explanation:
During rescue missions, different types of energy can be devices for flashlight, this could be human powered energy such as squeezing or compressing. In flashlight electrical energy is converted to light and thermal energy.
A squeezing or compressing to get energy for flashlight can be regarded as "DYNAMO PROCESS" it involves spinning of "fly wheels" into the flashlight through consistent squeezing ,which is connected to a dynamo(Dynamo supply electrical current). Hence the needed light is seen on the bulb of the flashlight.
Answer:
Explanation:
Since the system is in international space station
so here we can say that net force on the system is zero here
so Force by the astronaut on the space station = Force due to space station on boy
so here we know that
mass of boy = 70 kg
acceleration of boy =
now we know that
now for the space station will be same as above force
Answer:
205 V
V = 2.05 V
Explanation:
L = Inductance in Henries, (H) = 0.500 H
resistor is of 93 Ω so R = 93 Ω
The voltage across the inductor is
w = 500 rad/s
IwL = 11.0 V
Current:
I = 11.0 V / wL
= 11.0 V / 500 rad/s (0.500 H)
= 11.0 / 250
I = 0.044 A
Now
V = IR
= (0.044 A) (93 Ω)
V = 4.092 V
Deriving formula for voltage across the resistor
The derivative of sin is cos
V = V cos (wt)
Putting V = 4.092 V and w = 500 rad/s
V = V cos (wt)
= (4.092 V) (cos(500 rad/s )t)
So the voltage across the resistor at 2.09 x 10-3 s is which means
t = 2.09 x 10⁻³
V = (4.092 V) (cos (500 rads/s)(2.09 x 10⁻³s))
= (4.092 V) (cos (500 rads/s)(0.00209))
= (4.092 V) (cos(1.045))
= (4.092 V)(0.501902)
= 2.053783
V = 2.05 V